
Package: ordr (via r-universe)
October 10, 2024

Title A Tidyverse Extension for Ordinations and Biplots

Version 0.1.1.0001

Description Ordination comprises several multivariate exploratory and
explanatory techniques with theoretical foundations in
geometric data analysis; see Podani (2000, ISBN:90-5782-067-6)
for techniques and applications and Le Roux & Rouanet (2005)
<doi:10.1007/1-4020-2236-0> for foundations. Greenacre (2010,
ISBN:978-84-923846) shows how the most established of these,
including principal components analysis, correspondence
analysis, multidimensional scaling, factor analysis, and
discriminant analysis, rely on eigen-decompositions or singular
value decompositions of pre-processed numeric matrix data.
These decompositions give rise to a set of shared coordinates
along which the row and column elements can be measured. The
overlay of their scatterplots on these axes, introduced by
Gabriel (1971) <doi:10.1093/biomet/58.3.453>, is called a
biplot. 'ordr' provides inspection, extraction, manipulation,
and visualization tools for several popular ordination classes
supported by a set of recovery methods. It is inspired by and
designed to integrate into 'tidyverse' workflows provided by
Wickham et al (2019) <doi:10.21105/joss.01686>.

Depends R (>= 3.3.0), ggplot2

Imports rlang, stringr, tidyselect, scales, generics, magrittr,
tibble, tidyr, dplyr, purrr, labeling, ggrepel,

Suggests testthat, sessioninfo, gridExtra, MASS, mlpack, knitr,
rmarkdown

License GPL-3

Encoding UTF-8

LazyData true

URL https://github.com/corybrunson/ordr,

https://corybrunson.github.io/ordr/

BugReports https://github.com/corybrunson/ordr/issues

1

https://doi.org/10.1007/1-4020-2236-0
https://doi.org/10.1093/biomet/58.3.453
https://doi.org/10.21105/joss.01686
https://github.com/corybrunson/ordr
https://corybrunson.github.io/ordr/
https://github.com/corybrunson/ordr/issues

2 Contents

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)

Collate 'aaa-.r' 'biplot-key.r' 'biplot.r' 'data.r' 'dplyr-verbs.r'
'utils.r' 'ord-recoverers.r' 'ord-augmentation.r'
'ord-conference.r' 'ord-tbl.r' 'fun-lda.r' 'fun-lra.r'
'fun-wrap.r' 'geom-axis.r' 'geom-intervals.r' 'geom-isoline.r'
'geom-origin.r' 'geom-text-radiate.r' 'geom-utils.r'
'geom-vector.r' 'methods-base-eigen.r' 'methods-base-svd.r'
'methods-mass-correspondence.r' 'methods-mass-lda.r'
'methods-mass-mca.r' 'methods-ordr-lra.r'
'methods-stats-cancor.r' 'methods-stats-cmds.r'
'methods-stats-factanal.r' 'methods-stats-kmeans.r'
'methods-stats-lm.r' 'methods-stats-prcomp.r'
'methods-stats-princomp.r' 'ord-annotation.r' 'ord-format.r'
'ord-negation.r' 'ord-plot.r' 'ord-supplementation.r'
'ord-tidiers.r' 'ordinate.r' 'ordr.r' 'stat-center.r'
'stat-chull.r' 'stat-cone.r' 'stat-matrix.r' 'stat-scale.r'
'stat-spantree.r' 'themes.r' 'zzz-biplot-geoms.r'
'zzz-biplot-stats.r' 'zzz.r'

VignetteBuilder knitr

Repository https://corybrunson.r-universe.dev

RemoteUrl https://github.com/corybrunson/ordr

RemoteRef HEAD

RemoteSha 6724b0fae4b241dc1acb0ae412cdd80cec1533c1

Contents
annotation . 3
augmentation . 4
biplot-geoms . 5
biplot-stats . 16
conference . 22
dplyr-verbs . 24
draw-key . 26
format . 27
geom_axis . 28
geom_isoline . 32
geom_lineranges . 35
geom_origin . 38
geom_text_radiate . 40
geom_vector . 44
ggbiplot . 46
glass . 51
lda-ord . 52
lra-ord . 57
methods-cancor . 59

annotation 3

methods-cmds . 62
methods-correspondence . 63
methods-eigen . 65
methods-factanal . 68
methods-kmeans . 70
methods-lda . 72
methods-lm . 74
methods-lra . 76
methods-mca . 78
methods-prcomp . 80
methods-princomp . 82
methods-svd . 84
negation . 85
ordinate . 87
ordr-ggproto . 88
plot.tbl_ord . 89
qswur_usa . 90
recoverers . 91
stat_center . 94
stat_chull . 97
stat_cone . 99
stat_rows . 102
stat_scale . 104
stat_spantree . 107
supplementation . 110
tbl_ord . 111
theme_biplot . 112
tidiers . 113
wrap-ord . 115

Index 118

annotation Annotate factors of ’tbl_ord’ objects

Description

These functions annotate the matrix factors of tbl_ords with additional variables, and retrieve these
annotations.

The unexported annotation_*() and set_annotation_*() functions assign and retrieve values
of the "*_annotation" attributes of x, which must have the same number of rows as get_*(x).

Arguments

annot A data.frame having the same number of rows as get_*(x).

4 augmentation

See Also

augmentation methods that must interface with annotation.

augmentation Augment factors and coordinates of ’tbl_ord’ objects

Description

These functions return data associated with the cases, variables, and coordinates of an ordination
object, and attach it to the object.

Usage

recover_aug_rows(x)

recover_aug_cols(x)

recover_aug_coord(x)

augment_ord(x, .matrix = "dims")

Arguments

x An object of class ’tbl_ord’.

.matrix A character string partially matched (lowercase) to several indicators for one
or both matrices in a matrix decomposition used for ordination. The standard
values are "rows", "cols", and "dims" (for both).

Details

The recover_aug_*() S3 methods produce tibbles of values associated with the rows, columns,
and artificial coordinates of an object of class ’tbl_ord’. The first field of each tibble is name, which
contains the row, column, or coordinate names. Additional fields contain information about the
rows, columns, or coordinates extracted from the ordination object.

The function augment_ord() returns the ordination with either or both matrix factors annotated
with the result of recover_aug_*(). In this way augment_ord() works like generics::augment(),
as popularized by the broom package, by extracting information about the rows and columns, but
it differs in returning an annotated ’tbl_ord’ rather than a ’tbl_df’ object. The advantage of imple-
menting separate methods for the rows, columns, and artificial coordinates is that more information
contained in the original object becomes accessible to the user.

Value

The recover_aug_*() functions return tibbles having the same numbers of rows as recover_*().
augment_ord() returns an augmented tbl_ord with the wrapped model unchanged.

biplot-geoms 5

See Also

tidiers and annotation methods that interface with augmentation.

Other generic recoverers: conference, recoverers, supplementation

biplot-geoms Convenience geoms for row and column matrix factors

Description

These geometric element layers (geoms) pair conventional ggplot2 geoms with stat_rows() or
stat_cols() in order to render elements for one or the other matrix factor of a tbl_ord. They
understand the same aesthetics as their corresponding conventional geoms.

Usage

geom_rows_point(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_cols_point(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_rows_path(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
lineend = "butt",
linejoin = "round",
linemitre = 10,

6 biplot-geoms

arrow = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_cols_path(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
lineend = "butt",
linejoin = "round",
linemitre = 10,
arrow = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_rows_polygon(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
rule = "evenodd",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_cols_polygon(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
rule = "evenodd",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_rows_text(
mapping = NULL,
data = NULL,

biplot-geoms 7

stat = "identity",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_cols_text(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_rows_label(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
label.padding = unit(0.25, "lines"),
label.r = unit(0.15, "lines"),
label.size = 0.25,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_cols_label(
mapping = NULL,
data = NULL,
stat = "identity",

8 biplot-geoms

position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
label.padding = unit(0.25, "lines"),
label.r = unit(0.15, "lines"),
label.size = 0.25,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_rows_text_repel(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
parse = FALSE,
...,
box.padding = 0.25,
point.padding = 1e-06,
min.segment.length = 0.5,
arrow = NULL,
force = 1,
force_pull = 1,
max.time = 0.5,
max.iter = 10000,
max.overlaps = getOption("ggrepel.max.overlaps", default = 10),
nudge_x = 0,
nudge_y = 0,
xlim = c(NA, NA),
ylim = c(NA, NA),
na.rm = FALSE,
show.legend = NA,
direction = c("both", "y", "x"),
seed = NA,
verbose = FALSE,
inherit.aes = TRUE

)

geom_cols_text_repel(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
parse = FALSE,
...,

biplot-geoms 9

box.padding = 0.25,
point.padding = 1e-06,
min.segment.length = 0.5,
arrow = NULL,
force = 1,
force_pull = 1,
max.time = 0.5,
max.iter = 10000,
max.overlaps = getOption("ggrepel.max.overlaps", default = 10),
nudge_x = 0,
nudge_y = 0,
xlim = c(NA, NA),
ylim = c(NA, NA),
na.rm = FALSE,
show.legend = NA,
direction = c("both", "y", "x"),
seed = NA,
verbose = FALSE,
inherit.aes = TRUE

)

geom_rows_label_repel(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
parse = FALSE,
...,
box.padding = 0.25,
label.padding = 0.25,
point.padding = 1e-06,
label.r = 0.15,
label.size = 0.25,
min.segment.length = 0.5,
arrow = NULL,
force = 1,
force_pull = 1,
max.time = 0.5,
max.iter = 10000,
max.overlaps = getOption("ggrepel.max.overlaps", default = 10),
nudge_x = 0,
nudge_y = 0,
xlim = c(NA, NA),
ylim = c(NA, NA),
na.rm = FALSE,
show.legend = NA,
direction = c("both", "y", "x"),
seed = NA,

10 biplot-geoms

verbose = FALSE,
inherit.aes = TRUE

)

geom_cols_label_repel(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
parse = FALSE,
...,
box.padding = 0.25,
label.padding = 0.25,
point.padding = 1e-06,
label.r = 0.15,
label.size = 0.25,
min.segment.length = 0.5,
arrow = NULL,
force = 1,
force_pull = 1,
max.time = 0.5,
max.iter = 10000,
max.overlaps = getOption("ggrepel.max.overlaps", default = 10),
nudge_x = 0,
nudge_y = 0,
xlim = c(NA, NA),
ylim = c(NA, NA),
na.rm = FALSE,
show.legend = NA,
direction = c("both", "y", "x"),
seed = NA,
verbose = FALSE,
inherit.aes = TRUE

)

geom_rows_axis(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
axis_labels = TRUE,
axis_ticks = TRUE,
axis_text = TRUE,
by = NULL,
num = NULL,
tick_length = 0.025,
text_dodge = 0.03,
label_dodge = 0.03,

biplot-geoms 11

...,
parse = FALSE,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_cols_axis(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
axis_labels = TRUE,
axis_ticks = TRUE,
axis_text = TRUE,
by = NULL,
num = NULL,
tick_length = 0.025,
text_dodge = 0.03,
label_dodge = 0.03,
...,
parse = FALSE,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_rows_lineranges(
mapping = NULL,
data = NULL,
stat = "center",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_cols_lineranges(
mapping = NULL,
data = NULL,
stat = "center",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,

12 biplot-geoms

inherit.aes = TRUE
)

geom_rows_pointranges(
mapping = NULL,
data = NULL,
stat = "center",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_cols_pointranges(
mapping = NULL,
data = NULL,
stat = "center",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_rows_isoline(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
isoline_text = TRUE,
by = NULL,
num = NULL,
label_dodge = 0.03,
...,
parse = FALSE,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_cols_isoline(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
isoline_text = TRUE,

biplot-geoms 13

by = NULL,
num = NULL,
label_dodge = 0.03,
...,
parse = FALSE,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_rows_text_radiate(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_cols_text_radiate(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_rows_vector(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
arrow = default_arrow,
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

14 biplot-geoms

geom_cols_vector(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
arrow = default_arrow,
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

biplot-geoms 15

... Additional arguments passed to ggplot2::layer().

na.rm Passed to ggplot2::layer().

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

arrow Arrow specification, as created by grid::arrow().

rule Either "evenodd" or "winding". If polygons with holes are being drawn (us-
ing the subgroup aesthetic) this argument defines how the hole coordinates are
interpreted. See the examples in grid::pathGrob() for an explanation.

parse If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

nudge_x, nudge_y
Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text
from points, particularly on discrete scales. Cannot be jointly specified with
position.

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

label.padding Amount of padding around label. Defaults to 0.25 lines.

label.r Radius of rounded corners. Defaults to 0.15 lines.

label.size Size of label border, in mm.

box.padding Amount of padding around bounding box, as unit or number. Defaults to 0.25.
(Default unit is lines, but other units can be specified by passing unit(x, "units")).

point.padding Amount of padding around labeled point, as unit or number. Defaults to 0. (De-
fault unit is lines, but other units can be specified by passing unit(x, "units")).

min.segment.length

Skip drawing segments shorter than this, as unit or number. Defaults to 0.5. (De-
fault unit is lines, but other units can be specified by passing unit(x, "units")).

force Force of repulsion between overlapping text labels. Defaults to 1.

force_pull Force of attraction between a text label and its corresponding data point. De-
faults to 1.

max.time Maximum number of seconds to try to resolve overlaps. Defaults to 0.5.

max.iter Maximum number of iterations to try to resolve overlaps. Defaults to 10000.

max.overlaps Exclude text labels when they overlap too many other things. For each text label,
we count how many other text labels or other data points it overlaps, and exclude
the text label if it has too many overlaps. Defaults to 10.

16 biplot-stats

xlim, ylim Limits for the x and y axes. Text labels will be constrained to these limits. By
default, text labels are constrained to the entire plot area.

direction direction of stairs: ’vh’ for vertical then horizontal, ’hv’ for horizontal then
vertical, or ’mid’ for step half-way between adjacent x-values.

seed Random seed passed to set.seed. Defaults to NA, which means that set.seed
will not be called.

verbose If TRUE, some diagnostics of the repel algorithm are printed
axis_labels, axis_ticks, axis_text

Logical; whether to include labels, tick marks, and text value marks along the
axes.

by, num Intervals between elements or number of elements; specify only one.

tick_length Numeric; the length of the tick marks, as a proportion of the minimum of the
plot width and height.

text_dodge Numeric; the orthogonal distance of the text from the axis, as a proportion of
the minimum of the plot width and height.

label_dodge Numeric; the orthogonal distance of the text from the axis or isoline, as a pro-
portion of the minimum of the plot width and height.

isoline_text Logical; whether to include text value marks along the isolines.

Value

A ggproto layer.

See Also

Other biplot layers: biplot-stats, stat_rows()

biplot-stats Convenience stats for row and column matrix factors

Description

These statistical transformations (stats) adapt conventional ggplot2 stats to one or the other matrix
factor of a tbl_ord, in lieu of stat_rows() or stat_cols(). They accept the same parameters as
their corresponding conventional stats.

Usage

stat_rows_ellipse(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
...,
type = "t",

biplot-stats 17

level = 0.95,
segments = 51,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_cols_ellipse(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
...,
type = "t",
level = 0.95,
segments = 51,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_rows_center(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...,
fun.data = NULL,
fun.center = NULL,
fun.min = NULL,
fun.max = NULL,
fun.args = list()

)

stat_cols_center(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...,
fun.data = NULL,
fun.center = NULL,
fun.min = NULL,
fun.max = NULL,

18 biplot-stats

fun.args = list()
)

stat_rows_star(
mapping = NULL,
data = NULL,
geom = "segment",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...,
fun.data = NULL,
fun.center = NULL,
fun.args = list()

)

stat_cols_star(
mapping = NULL,
data = NULL,
geom = "segment",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...,
fun.data = NULL,
fun.center = NULL,
fun.args = list()

)

stat_rows_chull(
mapping = NULL,
data = NULL,
geom = "polygon",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...

)

stat_cols_chull(
mapping = NULL,
data = NULL,
geom = "polygon",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...

)

biplot-stats 19

stat_rows_cone(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
origin = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

stat_cols_cone(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
origin = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

stat_rows_scale(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...,
mult = 1

)

stat_cols_scale(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...,
mult = 1

)

stat_rows_spantree(
mapping = NULL,
data = NULL,

20 biplot-stats

geom = "segment",
position = "identity",
engine = "mlpack",
method = "euclidean",
show.legend = NA,
inherit.aes = TRUE,
...

)

stat_cols_spantree(
mapping = NULL,
data = NULL,
geom = "segment",
position = "identity",
engine = "mlpack",
method = "euclidean",
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

biplot-stats 21

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Additional arguments passed to ggplot2::layer().
type The type of ellipse. The default "t" assumes a multivariate t-distribution, and

"norm" assumes a multivariate normal distribution. "euclid" draws a circle
with the radius equal to level, representing the euclidean distance from the
center. This ellipse probably won’t appear circular unless coord_fixed() is
applied.

level The level at which to draw an ellipse, or, if type="euclid", the radius of the
circle to be drawn.

segments The number of segments to be used in drawing the ellipse.
na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,

missing values are silently removed.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

fun.data, fun.center, fun.min, fun.max, fun.args
Functions and arguments treated as in ggplot2::stat_summary(), with fun.center,
fun.min, and fun.max behaving as fun.y, fun.ymin, and fun.ymax.

origin Logical; whether to include the origin with the transformed data. Defaults to
FALSE.

mult Numeric value used to scale the coordinates.
engine A single character string specifying the package implementation to use; "mlpack",

"vegan", or "ade4".
method Passed to stats::dist() if engine is "vegan" or "ade4", ignored if "mlpack".

Value

A ggproto layer.

Ordination aesthetics

The convenience function ord_aes() can be used to incorporate all coordinates of the ordination
model into a statistical transformation. It maps the coordinates to the custom aesthetics ..coord1,
..coord2, etc.

Some transformations, e.g. stat_center(), are commutative with projection to the ’x’ and ’y’
coordinates. If they detect aesthetics of the form ..coord[0-9]+, then ..coord1 and ..coord2
are converted to x and y while any remaining are ignored.

22 conference

Other transformations, e.g. stat_spantree(), yield different results in a planar biplot when they
are computer before or after projection. If such a stat layer detects these aesthetics, then the lot of
them are used in the transformation.

In either case, the stat layer returns a data frame with position aesthetics x and y.

See Also

Other biplot layers: biplot-geoms, stat_rows()

Examples

compute row-principal components of scaled iris measurements
iris[, -5] %>%

prcomp(scale = TRUE) %>%
as_tbl_ord() %>%
mutate_rows(species = iris$Species) %>%
print() -> iris_pca

row-principal biplot with centroids and confidence elliptical disks
iris_pca %>%

ggbiplot(aes(color = species)) +
theme_bw() +
geom_rows_point() +
geom_polygon(
aes(fill = species),
color = NA, alpha = .25, stat = "rows_ellipse"

) +
geom_cols_vector(color = "#444444") +
scale_color_brewer(

type = "qual", palette = 2,
aesthetics = c("color", "fill")

) +
ggtitle(

"Row-principal PCA biplot of Anderson iris measurements",
"Overlaid with 95% confidence disks"

)

conference Confer inertia to factors of a ’tbl_ord’ object

Description

Re-distribute inertia between rows and columns in an ordination.

Usage

recover_conference(x)

Default S3 method:

conference 23

recover_conference(x)

get_conference(x)

revert_conference(x)

confer_inertia(x, p)

Arguments

x A tbl_ord.

p Numeric vector of length 1 or 2. If length 1, the proportion of the inertia assigned
to the cases, with the remainder 1 - p assigned to the variables. If length 2, the
proportions of the inertia assigned to the cases and to the variables, respectively.

Details

The inertia of a singular value decomposition X = UDV ′ consists in the squares of the singular
values (the diagonal elements of D), and represents the variance, likened to the physical inertia, in
the directions of the orthogonal singular vectors (the columns of U or of V). Biplots superimpose
the projections of the rows and the columns of X onto these coordinate vectors, scaled by some
proportion of the total inertia: UDp and V Dq . A biplot is balanced if p + q = 1. Read Orlov
(2013) for more on conferring inertia in PCA.

recover_conference(), like the other recoverers, is an S3 method that is exported for convenience
but not intended to be used directly.

Note: In case the "inertia" attribute is a rectangular matrix, one may only be able to confer it
entirely to the cases (p = 1) or entirely to the variables (p = 0).

Value

recover_conference() returns the (statically implemented) distribution of inertia between the
rows and the columns as stored in the model. confer_inertia() returns a tbl_ord with a specified
distribution of inertia but the wrapped model unchanged. get_conference() returns the distribu-
tion currently conferred.

References

Orlov K (2013) Answer to "Algebra of LDA. Fisher discrimination power of a variable and Linear
Discriminant Analysis". CrossValidated, accessed 2019-07-26. https://stats.stackexchange.
com/a/83114/68743

See Also

Other generic recoverers: augmentation, recoverers, supplementation

https://stats.stackexchange.com/a/83114/68743
https://stats.stackexchange.com/a/83114/68743

24 dplyr-verbs

Examples

illustrative ordination: correspendence analysis of hair & eye data
haireye_ca <- ordinate(

as.data.frame(rowSums(HairEyeColor, dims = 2L)),
cols = everything(), model = MASS::corresp

)
print(haireye_ca)

check distribution of inertia
get_conference(haireye_ca)
confer inertia to rows, then to columns
confer_inertia(haireye_ca, "rows")
confer_inertia(haireye_ca, "columns")
confer inertia symmetrically
(haireye_ca <- confer_inertia(haireye_ca, "symmetric"))
check redistributed inertia
get_conference(haireye_ca)
restore default distribution of inertia
revert_conference(haireye_ca)

dplyr-verbs dplyr verbs for tbl_ord factors

Description

These functions adapt dplyr verbs to the factors of a tbl_ord.

The raw verbs are not defined for tbl_ords; instead, each verb has two analogues, corresponding
to the two matrix factors. They each rely on a common workhorse function, which takes the com-
position of the dplyr verb with annotation_*, applied to the factor, removes any variables corre-
sponding to coordinates or already annotated, and only then assigns it as the new "*_annotation"
attribute of .data (see annotation). Note that these functions are not generics and so cannot be
extended to other classes.

Usage

pull_factor(.data, var = -1, .matrix)

pull_rows(.data, var = -1)

pull_cols(.data, var = -1)

rename_rows(.data, ...)

rename_cols(.data, ...)

select_rows(.data, ...)

select_cols(.data, ...)

dplyr-verbs 25

mutate_rows(.data, ...)

mutate_cols(.data, ...)

transmute_rows(.data, ...)

transmute_cols(.data, ...)

cbind_rows(.data, ..., elements = "all")

cbind_cols(.data, ..., elements = "all")

left_join_rows(.data, ...)

left_join_cols(.data, ...)

Arguments

.data An object of class ’tbl_ord’.

var A variable specified as in dplyr::pull().

.matrix A character string partially matched (lowercase) to several indicators for one
or both matrices in a matrix decomposition used for ordination. The standard
values are "rows", "cols", and "dims" (for both).

... Comma-separated unquoted expressions as in, e.g., dplyr::select().

elements Character vector; which elements of each factor for which to render graphi-
cal elements. One of "all" (the default), "active", or any supplementary
element type defined by the specific class methods (e.g. "score" for ’fac-
tanal’, ’lda_ord’, and ’cancord_ord’ and "intraset" and "interset" for ’can-
cor_ord’).

Value

A tbl_ord; the wrapped model is unchanged.

Examples

illustrative ordination: LDA of iris data
(iris_lda <- ordinate(iris, cols = 1:4, lda_ord, grouping = iris$Species))

extract a coordinate or annotation
head(pull_rows(iris_lda, Species))
pull_cols(iris_lda, LD2)

rename an annotation
rename_cols(iris_lda, species = name)

select annotations
select_rows(iris_lda, species = name, .element)

26 draw-key

create, modify, and delete annotations
mutate_cols(iris_lda, vec.length = sqrt(LD1^2 + LD2^2))
transmute_cols(iris_lda, vec.length = sqrt(LD1^2 + LD2^2))

bind data frames of annotations
iris_medians <-

stats::aggregate(iris[, 1:4], median, by = iris[, 5, drop = FALSE])
iris_lda %>%

retain '.element' in order to match by `elements`
select_rows(.element) %>%
cbind_rows(iris_medians, elements = "active")

draw-key Biplot key drawing functions

Description

These key drawing functions supplement those built into ggplot2 for producing legends suitable to
biplots.

Usage

draw_key_line(data, params, size)

draw_key_crosslines(data, params, size)

draw_key_crosspoint(data, params, size)

Arguments

data A single row data frame containing the scaled aesthetics to display in this key

params A list of additional parameters supplied to the geom.

size Width and height of key in mm.

Details

draw_key_line() is a horizontal counterpart to ggplot2::draw_key_vline(). draw_key_crosslines()
superimposes these two keys, and draw_key_crosspoint() additionally superimposes an over-
sized ggplot2::draw_key_point().

Value

A grid grob.

See Also

ggplot2::draw_key for key glyphs installed with ggplot2.

format 27

Examples

scaled PCA of Anderson iris data with ranges and confidence intervals
iris[, -5] %>%

prcomp(scale = TRUE) %>%
as_tbl_ord() %>%
confer_inertia(1) %>%
augment_ord() %>%
mutate_rows(species = iris$Species) %>%
ggbiplot(aes(color = species)) +
theme_bw() +
scale_color_brewer(type = "qual", palette = 2) +
geom_rows_lineranges(fun.data = mean_sdl, linewidth = .75) +
geom_rows_point(alpha = .5) +
geom_cols_vector(color = "#444444") +
geom_cols_text_radiate(aes(label = name), color = "#444444", size = 3) +
ggtitle(
"Row-principal PCA biplot of Anderson iris data",
"Ranges 2 sample standard deviations from centroids"

)

format Format a tbl_ord for printing

Description

These methods of base::format() and base::print() render a (usually more) tidy readout of a
tbl_ord that is consistent across all original ordination classes.

Usage

S3 method for class 'tbl_ord'
format(
x,
width = NULL,
...,
n = NULL,
max_extra_cols = NULL,
max_footer_lines = NULL

)

S3 method for class 'tbl_ord'
print(
x,
width = NULL,
...,
n = NULL,
max_extra_cols = NULL,
max_footer_lines = NULL

)

28 geom_axis

Arguments

x A tbl_ord.

width Width of text output to generate. This defaults to NULL, which means use the
width option.

... Additional arguments.

n Number of rows to show. If NULL, the default, will print all rows if less than
the print_max option. Otherwise, will print as many rows as specified by the
print_min option.

max_extra_cols Number of extra columns to print abbreviated information for, if the width is
too small for the entire tibble. If NULL, the max_extra_cols option is used. The
previously defined n_extra argument is soft-deprecated.

max_footer_lines

Maximum number of footer lines. If NULL, the max_footer_lines option is
used.

Details

The format and print methods for class ’tbl_ord’ are adapted from those for class ’tbl_df’ and for
class ’tbl_graph’ from the tidygraph package.

Note: The format() function is tedius but cannot be easily modularized without invoking recover-
ers, annotation, and augmentation multiple times, thereby significantly reducing performance.

Value

The format() method returns a vector of strings that are more elegantly printed by the print()
method, which itself returns the tbl_ord invisibly.

geom_axis Axes through the origin

Description

geom_axis() renders lines through the origin and the position of each case or variable.

Usage

geom_axis(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
axis_labels = TRUE,
axis_ticks = TRUE,
axis_text = TRUE,
by = NULL,

geom_axis 29

num = NULL,
tick_length = 0.025,
text_dodge = 0.03,
label_dodge = 0.03,
...,
parse = FALSE,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

30 geom_axis

axis_labels, axis_ticks, axis_text
Logical; whether to include labels, tick marks, and text value marks along the
axes.

by, num Intervals between elements or number of elements; specify only one.

tick_length Numeric; the length of the tick marks, as a proportion of the minimum of the
plot width and height.

text_dodge Numeric; the orthogonal distance of the text from the axis, as a proportion of
the minimum of the plot width and height.

label_dodge Numeric; the orthogonal distance of the text from the axis or isoline, as a pro-
portion of the minimum of the plot width and height.

... Additional arguments passed to ggplot2::layer().

parse If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

na.rm Passed to ggplot2::layer().

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

A ggproto layer.

Biplot layers

ggbiplot() uses ggplot2::fortify() internally to produce a single data frame with a .matrix
column distinguishing the subjects ("rows") and variables ("cols"). The stat layers stat_rows()
and stat_cols() simply filter the data frame to one of these two.

The geom layers geom_rows_*() and geom_cols_*() call the corresponding stat in order to render
plot elements for the corresponding factor matrix. geom_dims_*() selects a default matrix based
on common practice, e.g. points for rows and arrows for columns.

Aesthetics

geom_axis() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• colour

geom_axis 31

• alpha

• linewidth

• linetype

• label

• center, scale

• label_colour, label_alpha, label_size, label_angle, label_hjust, label_vjust, label_family,
label_fontface

• tick_colour, tick_alpha, tick_linewidth, tick_linetype

• text_colour, text_alpha, text_size, text_angle, text_hjust, text_vjust, text_family,
text_fontface

• group

The prefixed aesthetics label_*, tick_*, and text_* are used by the text elements and will inherit
any values passed to their un-prefixed counterparts, if recognized.

See Also

Other geom layers: geom_isoline(), geom_lineranges(), geom_origin(), geom_text_radiate(),
geom_vector()

Examples

Freestone primary glass measurements
print(glass)

default (standardized) linear discriminant analysis of sites on measurements
glass_lda <- MASS::lda(Site ~ SiO2 + Al2O3 + FeO + MgO + CaO, glass)
bestow 'tbl_ord' class & augment observation, centroid, and variable fields
as_tbl_ord(glass_lda) %>%

augment_ord() %>%
mutate_rows(discriminant =

ifelse(.element == "active", "centroid", "case")) %>%
print() -> glass_lda

row-standard biplot
glass_lda %>%

confer_inertia(1) %>%
ggbiplot() +
theme_bw() + theme_biplot() +
geom_rows_point(aes(shape = grouping, size = discriminant), alpha = .5) +
geom_cols_axis(aes(label = name), color = "#888888", num = 8L,

text_size = 2.5, label_dodge = .02) +
scale_shape_manual(values = c(2L, 3L, 0L, 5L)) +
ggtitle(
"LDA of Freestone glass measurements",
"Row-standard biplot of standardized LDA"

)

contribution LDA of sites on measurements
glass_lda <-

32 geom_isoline

lda_ord(Site ~ SiO2 + Al2O3 + FeO + MgO + CaO, glass,
axes.scale = "contribution")

bestow 'tbl_ord' class & augment observation, centroid, and variable fields
as_tbl_ord(glass_lda) %>%

augment_ord() %>%
mutate_rows(discriminant =

ifelse(.element == "active", "centroid", "case")) %>%
print() -> glass_lda

symmetric biplot
glass_lda %>%

confer_inertia(.5) %>%
ggbiplot() +
theme_bw() + theme_biplot() +
geom_rows_point(aes(shape = grouping, alpha = discriminant)) +
geom_cols_axis(color = "#888888", num = 8L,

text_size = 2.5, text_dodge = .025) +
scale_shape_manual(values = c(16L, 17L, 15L, 18L)) +
ggtitle(

"LDA of Freestone glass measurements",
"Symmetric biplot of contribution LDA"

)

geom_isoline Isolines (contour lines)

Description

geom_isoline() renders isolines along row or column axes.

Usage

geom_isoline(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
isoline_text = TRUE,
by = NULL,
num = NULL,
label_dodge = 0.03,
...,
parse = FALSE,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_isoline 33

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

isoline_text Logical; whether to include text value marks along the isolines.

by, num Intervals between elements or number of elements; specify only one.

label_dodge Numeric; the orthogonal distance of the text from the axis or isoline, as a pro-
portion of the minimum of the plot width and height.

... Additional arguments passed to ggplot2::layer().

parse If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

34 geom_isoline

na.rm Passed to ggplot2::layer().

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

A ggproto layer.

Biplot layers

ggbiplot() uses ggplot2::fortify() internally to produce a single data frame with a .matrix
column distinguishing the subjects ("rows") and variables ("cols"). The stat layers stat_rows()
and stat_cols() simply filter the data frame to one of these two.

The geom layers geom_rows_*() and geom_cols_*() call the corresponding stat in order to render
plot elements for the corresponding factor matrix. geom_dims_*() selects a default matrix based
on common practice, e.g. points for rows and arrows for columns.

Aesthetics

geom_isoline() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• colour

• alpha

• linewidth

• linetype

• center, scale

• angle

• hjust

• vjust

• family

• fontface

• text_colour, text_alpha, text_size,

• group

The prefixed aesthetics text_* are used by the text elements and will inherit any values passed to
their un-prefixed counterparts.

geom_lineranges 35

See Also

Other geom layers: geom_axis(), geom_lineranges(), geom_origin(), geom_text_radiate(),
geom_vector()

Examples

Freestone primary glass measurements
head(glass)
default (standardized) linear discriminant analysis of sites on measurements
glass_lda <- MASS::lda(Site ~ SiO2 + Al2O3 + FeO + MgO + CaO, glass)

bestow 'tbl_ord' class & augment centroid and variable fields
as_tbl_ord(glass_lda) %>%

augment_ord() %>%
print() -> glass_lda

row-standard biplot
glass_lda %>%

confer_inertia(1) %>%
ggbiplot(aes(label = name), elements = "active") +
theme_bw() + theme_biplot() +
geom_rows_text() +
geom_cols_vector(subset = c(1, 3, 4)) +
geom_cols_text_radiate(subset = c(1, 3, 4), size = 3) +
geom_cols_isoline(subset = c(1, 3, 4), alpha = .25, num = 4L,

label_dodge = -.03, text_alpha = .5, text_size = 3) +
ggtitle(
"LDA of Freestone glass measurements",
"Row-standard biplot of standardized LDA"

) +
scale_x_continuous(expand = expansion(mult = .1)) +
scale_y_continuous(expand = expansion(mult = .1))

geom_lineranges Intervals depicting ranges, usually about center points

Description

geom_lineranges() renders horizontal and vertical intervals for a specified subject or variable;
geom_pointranges() additionally renders a point at their crosshairs.

Usage

geom_lineranges(
mapping = NULL,
data = NULL,
stat = "center",
position = "identity",
...,

36 geom_lineranges

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_pointranges(
mapping = NULL,
data = NULL,
stat = "center",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

geom_lineranges 37

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Additional arguments passed to ggplot2::layer().

na.rm Passed to ggplot2::layer().

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

A ggproto layer.

Biplot layers

ggbiplot() uses ggplot2::fortify() internally to produce a single data frame with a .matrix
column distinguishing the subjects ("rows") and variables ("cols"). The stat layers stat_rows()
and stat_cols() simply filter the data frame to one of these two.

The geom layers geom_rows_*() and geom_cols_*() call the corresponding stat in order to render
plot elements for the corresponding factor matrix. geom_dims_*() selects a default matrix based
on common practice, e.g. points for rows and arrows for columns.

Aesthetics

geom_lineranges() and geom_pointranges() understand the following aesthetics (required aes-
thetics are in bold):

• x

• xmin

• xmax

• y

• ymin

• ymax‘

• alpha

• colour

• linewidth

• linetype

• size

• group

38 geom_origin

See Also

Other geom layers: geom_axis(), geom_isoline(), geom_origin(), geom_text_radiate(),
geom_vector()

Examples

compute log-ratio analysis of Freestone primary class composition measurements
glass %>%

ordinate(cols = c(SiO2, Al2O3, CaO, FeO, MgO),
model = lra, compositional = TRUE) %>%

confer_inertia("rows") %>%
print() -> glass_lra

row-principal biplot with ordinate-wise standard deviations
glass_lra %>%

ggbiplot(aes(color = Site), sec.axes = "cols") +
theme_biplot() +
scale_color_brewer(type = "qual", palette = 6) +
geom_cols_text(stat = "chull", aes(label = name), color = "#444444") +
geom_rows_lineranges(fun.data = mean_sdl, linewidth = .75) +
geom_rows_point(alpha = .5) +
ggtitle(
"Row-principal LRA biplot of Freestone glass measurements",
"Ranges 2 sample standard deviations from centroids"

)

geom_origin Marker or unit circle at the origin

Description

geom_origin() renders a symbol, either a set of crosshairs or a circle, at the origin. geom_unit_circle()
renders the unit circle, centered at the origin with radius 1.

Usage

geom_origin(
mapping = NULL,
data = NULL,
marker = "crosshairs",
radius = unit(0.04, "snpc"),
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = FALSE

)

geom_unit_circle(

geom_origin 39

mapping = NULL,
data = NULL,
segments = 60,
scale.factor = 1,
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = FALSE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

marker The symbol to be drawn at the origin; matched to "crosshairs" or "circle".
radius A grid::unit() object that sets the radius of the crosshairs or of the circle.
... Additional arguments passed to ggplot2::layer().
na.rm Passed to ggplot2::layer().
show.legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

segments The number of segments to be used in drawing the circle.
scale.factor The circle radius; should remain at its default value 1 or passed the same value as

ggbiplot(). (This is an imperfect fix that may be changed in a future version.)

Value

A ggproto layer.

Biplot layers

ggbiplot() uses ggplot2::fortify() internally to produce a single data frame with a .matrix
column distinguishing the subjects ("rows") and variables ("cols"). The stat layers stat_rows()
and stat_cols() simply filter the data frame to one of these two.

40 geom_text_radiate

The geom layers geom_rows_*() and geom_cols_*() call the corresponding stat in order to render
plot elements for the corresponding factor matrix. geom_dims_*() selects a default matrix based
on common practice, e.g. points for rows and arrows for columns.

Aesthetics

geom_origin() accepts no aesthetics. geom_unit_circle() understands the following aesthetics
(none required):

• alpha

• colour

• linetype

• size

See Also

Other geom layers: geom_axis(), geom_isoline(), geom_lineranges(), geom_text_radiate(),
geom_vector()

Examples

principal components analysis of glass composition measurements
glass[, c(5L, 7L, 8L, 10L, 11L)] %>%

princomp(cor = TRUE) %>%
as_tbl_ord() %>%
cbind_rows(site = glass$Site, form = glass$Form) %>%
augment_ord() %>%
print() -> glass_pca

note that column standard coordinates are unit vectors
rowSums(get_cols(glass_pca) ^ 2)

plot column standard coordinates with a unit circle underlaid
glass_pca %>%

ggbiplot(aes(label = name), sec.axes = "cols") +
theme_biplot() +
geom_rows_point(aes(color = site, shape = form), alpha = .5) +
geom_unit_circle(alpha = .5, scale.factor = 3) +
geom_cols_vector() +
geom_cols_text_radiate()

geom_text_radiate Text radiating outward from the origin

Description

geom_text_radiate() is adapted from ggbiplot() in the off-CRAN extensions of the same name
(Vu, 2014; Telford, 2017; Gegzna, 2018). It renders text at specified positions and angles that radiate
out from the origin.

geom_text_radiate 41

Usage

geom_text_radiate(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. Cannot be jointy specified
with nudge_x or nudge_y. This can be used in various ways, including to pre-
vent overplotting and improving the display. The position argument accepts
the following:

• The result of calling a position function, such as position_jitter().
• A string nameing the position adjustment. To give the position as a string,

strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

42 geom_text_radiate

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

parse If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

A ggproto layer.

Biplot layers

ggbiplot() uses ggplot2::fortify() internally to produce a single data frame with a .matrix
column distinguishing the subjects ("rows") and variables ("cols"). The stat layers stat_rows()
and stat_cols() simply filter the data frame to one of these two.

geom_text_radiate 43

The geom layers geom_rows_*() and geom_cols_*() call the corresponding stat in order to render
plot elements for the corresponding factor matrix. geom_dims_*() selects a default matrix based
on common practice, e.g. points for rows and arrows for columns.

Aesthetics

geom_text_radiate() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• label

• alpha

• angle

• colour

• family

• fontface

• hjust

• lineheight

• size

• vjust

• group

References

Vincent Q. Vu (2014). ggbiplot: A ’ggplot2’ based biplot. R package version 0.55. https://
github.com/vqv/ggbiplot, experimental branch

Richard J Telford (2017). ggbiplot: A ’ggplot2’ based biplot. R package version 0.6. https:
//github.com/richardjtelford/ggbiplot (fork), experimental branch

Vilmantas Gegzna (2018). ggbiplot: A ’ggplot2’ based biplot. R package version 0.55. https:
//github.com/forked-packages/ggbiplot (fork), experimental branch

See Also

Other geom layers: geom_axis(), geom_isoline(), geom_lineranges(), geom_origin(), geom_vector()

https://github.com/vqv/ggbiplot
https://github.com/vqv/ggbiplot
https://github.com/richardjtelford/ggbiplot
https://github.com/richardjtelford/ggbiplot
https://github.com/forked-packages/ggbiplot
https://github.com/forked-packages/ggbiplot

44 geom_vector

geom_vector Vectors from the origin

Description

geom_vector() renders arrows from the origin to points.

Usage

geom_vector(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
arrow = default_arrow,
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

geom_vector 45

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

arrow Specification for arrows, as created by grid::arrow(), or else NULL for no
arrows.

... Additional arguments passed to ggplot2::layer().

na.rm Passed to ggplot2::layer().

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

A ggproto layer.

Biplot layers

ggbiplot() uses ggplot2::fortify() internally to produce a single data frame with a .matrix
column distinguishing the subjects ("rows") and variables ("cols"). The stat layers stat_rows()
and stat_cols() simply filter the data frame to one of these two.

The geom layers geom_rows_*() and geom_cols_*() call the corresponding stat in order to render
plot elements for the corresponding factor matrix. geom_dims_*() selects a default matrix based
on common practice, e.g. points for rows and arrows for columns.

Aesthetics

geom_vector() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• linetype

• size

• group

46 ggbiplot

See Also

Other geom layers: geom_axis(), geom_isoline(), geom_lineranges(), geom_origin(), geom_text_radiate()

Examples

compute unscaled row-principal components of scaled measurements
(iris_pca <- ordinate(iris, cols = 1:4, princomp))

row-principal biplot with coordinate-wise standard deviations
iris_pca %>%

ggbiplot(aes(color = Species)) +
theme_bw() +
scale_color_brewer(type = "qual", palette = 2) +
geom_unit_circle() +
geom_rows_point(alpha = .5) +
geom_cols_vector(color = "#444444") +
geom_cols_text_radiate(aes(label = name), color = "#444444") +
ggtitle("Row-principal unscaled PCA biplot of Anderson iris measurements") +
expand_limits(y = c(NA, 2))

ggbiplot Biplots following the grammar of graphics

Description

Build a biplot visualization from ordination data wrapped as a tbl_ord object.

Usage

ggbiplot(
ordination = NULL,
mapping = aes(x = 1, y = 2),
axis.type = "interpolative",
xlim = NULL,
ylim = NULL,
expand = TRUE,
clip = "on",
axis.percents = TRUE,
sec.axes = NULL,
scale.factor = "inertia",
scale_rows = NULL,
scale_cols = NULL,
...

)

ord_aes(ordination, ...)

ggbiplot 47

Arguments

ordination A tbl_ord.
mapping List of default aesthetic mappings to use for the biplot. The default assigns

the first two coordinates to the aesthetics x and y. Other assignments must be
supplied in each layer added to the plot.

axis.type Character, partially matched; whether to build an "interpolative" (the de-
fault) or a "predictive" biplot. The latter requires that x and y are mapped to
shared coordinates, that no other shared coordinates are mapped to, and inertia is
conferred entirely onto one matrix factor. NB: This option is only implemented
for linear techniques (ED, SVD, & PCA).

xlim, ylim Limits for the x and y axes.
expand If TRUE, the default, adds a small expansion factor to the limits to ensure that

data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

clip Should drawing be clipped to the extent of the plot panel? A setting of "on" (the
default) means yes, and a setting of "off" means no. In most cases, the default
of "on" should not be changed, as setting clip = "off" can cause unexpected
results. It allows drawing of data points anywhere on the plot, including in
the plot margins. If limits are set via xlim and ylim and some data points fall
outside those limits, then those data points may show up in places such as the
axes, the legend, the plot title, or the plot margins.

axis.percents Whether to concatenate default axis labels with inertia percentages.
sec.axes Matrix factor character to specify a secondary set of axes.
scale.factor Either a numeric value, used to scale the secondary axes against the primary

axes, or the name of a harmonizing function (currently "range" or "inertia");
ignored if sec.axes is not specified.

scale_rows, scale_cols
Either the character name of a numeric variable in get_*(ordination) or a
numeric vector of length nrow(get_*(ordination)), used to scale the coordi-
nates of the matrix factors.

... Additional arguments passed to ggplot2::fortify(); see fortify.tbl_ord().

Details

ggbiplot() produces a ggplot object from a tbl_ord object ordination. The baseline object is the
default unadorned "ggplot"-class object p with the following differences from what ggplot2::ggplot()
returns:

• p$mapping is augmented with .matrix = .matrix, which expects either .matrix = "rows"
or .matrix = "cols" from the biplot.

• p$coordinates is defaulted to ggplot2::coord_equal() in order to faithfully render the
geometry of an ordination. The optional parameters xlim, ylim, expand, and clip are passed
to coord_equal() and default to its ggplot2 defaults.

• When x or y are mapped to coordinates of ordination, and if axis.percents is TRUE,
p$labels$x or p$labels$y are defaulted to the coordinate names concatenated with the per-
centages of inertia captured by the coordinates.

48 ggbiplot

• p is assigned the class "ggbiplot" in addition to "ggplot". This serves no functional purpose
currently.

Furthermore, the user may feed single integer values to the x and y aesthetics, which will be inter-
preted as the corresponding coordinates in the ordination. Currently only 2-dimensional biplots are
supported, so both x and y must take coordinate values.

ord_aes() is a convenience function that generates a full-rank set of coordinate aesthetics ..coord1,
..coord2, etc. mapped to the shared coordinates of the ordination object, along with any additional
aesthetics that are processed internally by ggplot2::aes().

The axis.type parameter controls whether the biplot is interpolative or predictive, though predic-
tive biplots are still experimental and limited to linear methods like PCA. Gower & Hand (1996) and
Gower, Gardner–Lubbe, & le Roux (2011) thoroughly explain the construction and interpretation
of predictive biplots.

Value

A ggplot object.

Biplot layers

ggbiplot() uses ggplot2::fortify() internally to produce a single data frame with a .matrix
column distinguishing the subjects ("rows") and variables ("cols"). The stat layers stat_rows()
and stat_cols() simply filter the data frame to one of these two.

The geom layers geom_rows_*() and geom_cols_*() call the corresponding stat in order to render
plot elements for the corresponding factor matrix. geom_dims_*() selects a default matrix based
on common practice, e.g. points for rows and arrows for columns.

References

Gower JC & Hand DJ (1996) Biplots. Chapman & Hall, ISBN: 0-412-71630-5.

Gower JC, Gardner–Lubbe S, & le Roux NJ (2011) Understanding Biplots. Wiley, ISBN: 978-0-
470-01255-0. https://www.wiley.com/go/biplots

See Also

ggplot2::ggplot2(), on which ggbiplot() is built

Examples

compute PCA of Anderson iris measurements
iris[, -5] %>%

princomp(cor = TRUE) %>%
as_tbl_ord() %>%
confer_inertia(1) %>%
mutate_rows(species = iris$Species) %>%
mutate_cols(measure = gsub("\\.", " ", tolower(names(iris)[-5]))) %>%
print() -> iris_pca

row-principal biplot with range-harmonized secondary axis
iris_pca %>%

https://www.wiley.com/go/biplots

ggbiplot 49

ggbiplot(aes(color = species), sec.axes = "cols", scale.factor = "range") +
theme_bw() +
scale_color_brewer(type = "qual", palette = 2) +
geom_rows_point() +
geom_cols_vector(color = "#444444") +
geom_cols_text_radiate(aes(label = measure), color = "#444444") +
ggtitle(

"Row-principal PCA biplot of Anderson iris measurements",
"Variable loadings scaled to secondary axes"

) +
expand_limits(y = c(-1, 3.5))

row-principal biplot with manually rescaled secondary axis
iris_pca %>%

ggbiplot(aes(color = species), sec.axes = "cols", scale.factor = 2) +
theme_bw() +
scale_color_brewer(type = "qual", palette = 2) +
geom_rows_point() +
geom_cols_vector(color = "#444444") +
geom_cols_text_radiate(aes(label = measure), color = "#444444") +
ggtitle(

"Row-principal PCA biplot of Anderson iris measurements",
"Variable loadings scaled to secondary axes"

) +
expand_limits(y = c(-1, 3.5))

Performance measures can be regressed on the artificial coordinates of
ordinated vehicle specs. Because the ordination of specs ignores performance,
these coordinates will probably not be highly predictive. The gradient of each
performance measure along the artificial axes is visualized by projecting the
regression coefficients onto the ordination biplot.

scaled principal components analysis of vehicle specs
mtcars_specs_pca <- ordinate(

mtcars, cols = c(cyl, disp, hp, drat, wt, vs, carb),
model = ~ princomp(., cor = TRUE)

)
data frame of vehicle performance measures
mtcars %>%

subset(select = c(mpg, qsec)) %>%
as.matrix() %>%
print() -> mtcars_perf

regress performance measures on principal components
lm(mtcars_perf ~ get_rows(mtcars_specs_pca)) %>%

as_tbl_ord() %>%
augment_ord() %>%
print() -> mtcars_pca_lm

regression biplot
ggbiplot(mtcars_specs_pca, aes(label = name),

sec.axes = "rows", scale.factor = .5) +
theme_minimal() +
geom_rows_text(size = 3) +
geom_cols_vector(data = mtcars_pca_lm) +
geom_cols_text_radiate(data = mtcars_pca_lm) +

50 ggbiplot

expand_limits(x = c(-2.5, 2))

multidimensional scaling based on a scaled cosine distance of vehicle specs
cosine_dist <- function(x) {

x <- as.matrix(x)
num <- x %*% t(x)
denom_rt <- as.matrix(rowSums(x^2))
denom <- sqrt(denom_rt %*% t(denom_rt))
as.dist(1 - num / denom)

}
mtcars %>%

subset(select = c(cyl, disp, hp, drat, wt, vs, carb)) %>%
scale() %>%
cosine_dist() %>%
cmdscale() %>%
as.data.frame() ->
mtcars_specs_cmds

names must be consistent with `cmdscale_ord()` below
names(mtcars_specs_cmds) <- c("PCo1", "PCo2")
regress performance measures on principal coordinates
lm(mtcars_perf ~ as.matrix(mtcars_specs_cmds)) %>%

as_tbl_ord() %>%
augment_ord() %>%
print() -> mtcars_cmds_lm

multidimensional scaling using `cmdscale_ord()`
mtcars %>%

subset(select = c(cyl, disp, hp, drat, wt, vs, carb)) %>%
scale() %>%
cosine_dist() %>%
cmdscale_ord() %>%
as_tbl_ord() %>%
augment_ord() %>%
print() -> mtcars_specs_cmds_ord

regression biplot
ggbiplot(mtcars_specs_cmds_ord, aes(label = name),

sec.axes = "rows", scale.factor = 3) +
theme_minimal() +
geom_rows_text(size = 3) +
geom_cols_vector(data = mtcars_cmds_lm) +
geom_cols_text_radiate(data = mtcars_cmds_lm) +
expand_limits(x = c(-2.25, 1.25), y = c(-2, 1.5))

PCA of iris data
iris_pca <- ordinate(iris, cols = 1:4, prcomp, scale = TRUE)

row-principal predictive biplot
iris_pca %>%

augment_ord() %>%
ggbiplot(axis.type = "predictive") +
theme_bw() +
scale_color_brewer(type = "qual", palette = 2) +
geom_cols_axis(aes(label = name, center = center, scale = scale)) +
geom_rows_point(aes(color = Species), alpha = .5) +
ggtitle("Predictive biplot of Anderson iris measurements")

glass 51

glass Glass composition data

Description

Sites, types, and compositions of glass samples from archaeological sites in Israel.

Usage

data(glass)

Format

A tibble with 68 cases and 16 variables:

Site site at which sample was found

Anal analysis identifier

Context furnace identifier

Form type of sample

SiO2, TiO2, Al2O3, FeO, MnO, MgO, CaO, Na2O, K2O, P2O5, Cl, SO3 normalized weight per-
cent oxide of each component

Details

Chunks of unformed glass from several furnaces found at the primary Byzantine-era site of Bet
Eli’ezer, along with samples from other sites with weaker evidence of glass-making (Apollonia
and Dor) and and from an Islamic-era site (Banias), were analyzed using X-ray spectrometry to
determine their major components.

Baxter & Freestone (2006) used these data to illustrate log-ratio analysis.

Source

Freestone &al (2000), Table 2.

References

Freestone IC, Gorin-Rosen Y, & Hughes MJ (2000) "Primary glass from Israel and the production
of glass in Late Antiquity and the early Islamic period". La route du verre: Ateliers primaires et
secondaires du second millénaire av. J.-C. au Moyen Âge: 65–83. https://pascal-francis.
inist.fr/vibad/index.php?action=getRecordDetail&idt=1158762

Baxter MJ & Freestone IC (2006) "Log-Ratio Compositional Data Analysis in Archaeometry".
Archaeometry, 48(3): 511–531. doi:10.1111/j.14754754.2006.00270.x

https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1158762
https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1158762
https://doi.org/10.1111/j.1475-4754.2006.00270.x

52 lda-ord

Examples

subset glass data to one site and major components
head(glass)
glass_main <- subset(

glass,
Site == "Bet Eli'ezer",
select = c("SiO2", "Na2O", "CaO", "Al2O3", "MgO", "K2O")

)
format as a data frame with row names
glass_main <- as.data.frame(glass_main)
rownames(glass_main) <- subset(glass, Site == "Bet Eli'ezer")$Anal

perform log-ratio analysis
glass_lra <- lra(glass_main, compositional = TRUE, weighted = FALSE)
inspect LRA row and column coordinates
head(glass_lra$row.coords)
glass_lra$column.coords
inspect singular values of LRA
glass_lra$sv

plot samples and measurements in a biplot
biplot(

x = glass_lra$row.coords %*% diag(glass_lra$sv),
y = glass_lra$column.coords,
xlab = "Sample (principal coord.)", ylab = ""

)
mtext("Component (standard coord.)", side = 4L, line = 3L)

lda-ord Augmented implementation of linear discriminant analysis

Description

This function replicates MASS::lda() with options to retain elements useful to the tbl_ord class and
biplot calculations.

Usage

lda_ord(x, ...)

S3 method for class 'formula'
lda_ord(formula, data, ..., subset, na.action)

S3 method for class 'data.frame'
lda_ord(x, ...)

S3 method for class 'matrix'
lda_ord(x, grouping, ..., subset, na.action)

lda-ord 53

Default S3 method:
lda_ord(
x,
grouping,
prior = proportions,
tol = 1e-04,
method = c("moment", "mle", "mve", "t"),
CV = FALSE,
nu = 5,
...,
ret.x = FALSE,
ret.grouping = FALSE,
axes.scale = "unstandardized"

)

S3 method for class 'lda_ord'
predict(
object,
newdata,
prior = object$prior,
dimen,
method = c("plug-in", "predictive", "debiased"),
...

)

Arguments

x (required if no formula is given as the principal argument.) a matrix or data
frame or Matrix containing the explanatory variables.

... arguments passed to or from other methods.

formula A formula of the form groups ~ x1 + x2 + ... That is, the response is the group-
ing factor and the right hand side specifies the (non-factor) discriminators.

data An optional data frame, list or environment from which variables specified in
formula are preferentially to be taken.

subset An index vector specifying the cases to be used in the training sample. (NOTE:
If given, this argument must be named.)

na.action A function to specify the action to be taken if NAs are found. The default action
is for the procedure to fail. An alternative is na.omit, which leads to rejection
of cases with missing values on any required variable. (NOTE: If given, this
argument must be named.)

grouping (required if no formula principal argument is given.) a factor specifying the class
for each observation.

prior the prior probabilities of class membership. If unspecified, the class proportions
for the training set are used. If present, the probabilities should be specified in
the order of the factor levels.

tol A tolerance to decide if a matrix is singular; it will reject variables and linear
combinations of unit-variance variables whose variance is less than tol^2.

54 lda-ord

method "moment" for standard estimators of the mean and variance, "mle" for MLEs,
"mve" to use cov.mve, or "t" for robust estimates based on a t distribution.

CV If true, returns results (classes and posterior probabilities) for leave-one-out
cross-validation. Note that if the prior is estimated, the proportions in the whole
dataset are used.

nu degrees of freedom for method = "t".
ret.x, ret.grouping

Logical; whether to retain as attributes the data matrix (x) and the class assign-
ments (grouping) on which LDA is performed. Methods like predict() access
these objects by name in the parent environment, and retaining them as attributes
prevents errors that arise if these objects are reassigned.

axes.scale Character string indicating how to left-transform the scaling value when ren-
dering biplots using ggbiplot(). Options include "unstandardized", "standardized",
and "contribution".

object object of class "lda"

newdata data frame of cases to be classified or, if object has a formula, a data frame with
columns of the same names as the variables used. A vector will be interpreted
as a row vector. If newdata is missing, an attempt will be made to retrieve the
data used to fit the lda object.

dimen the dimension of the space to be used. If this is less than min(p, ng-1), only the
first dimen discriminant components are used (except for method="predictive"),
and only those dimensions are returned in x.

Details

Linear discriminant analysis relies on an eigendecomposition of the product W−1B of the inverse
of the within-class covariance matrix W by the between-class covariance matrix B. This eigen-
decomposition can be motivated as the right (V) half of the singular value decomposition of the
matrix of Mahalanobis distances between the cases after "sphering" (linearly transforming them
so that the within-class covariance is the identity matrix). LDA are not traditionally represented as
biplots, with some exceptions (Gardner & le Roux, 2005; Greenacre, 2010, p. 109–117).

LDA is implemented as MASS::lda() in the MASS package, in which the variables are transformed
by a sphering matrix S (Venables & Ripley, 2003, p. 331–333). The returned element scaling
contains the unstandardized discriminant coefficients, which define the discriminant scores of the
cases and their centroids as linear combinations of the original variables.

The discriminant coefficients constitute one of several possible choices of axes for a biplot repre-
sentation of the LDA. The slightly modified function lda_ord() provides additional options:

• The standardized discriminant coefficients are obtained by (re)scaling the coefficients by the
variable standard deviations. These coefficients indicate the contributions of the variables to
the discriminant scores after controlling for their variances (Orlov, 2013).

• The variables’ contributions to the Mahalanobis variance along each discriminant axis are
obtained by transforming the coefficients by the inverse of the sphering matrix S. Because the
contribution biplot derives from the eigendecomposition of the Mahalanobis distance matrix,
the projections of the centroids and cases onto the variable axes approximate their variable
values after centering and sphering (Greenacre, 2013).

lda-ord 55

Value

Output from MASS::lda() with an additional preceding class ’lda_ord’ and up to three attributes:

• the input data x, if ret.x = TRUE

• the class assignments grouping, if ret.grouping = TRUE

• if the parameter axes.scale is not ’unstandardized’, a matrix axes.scale that encodes the
transformation of the row space

References

Gardner S & le Roux NJ (2005) "Extensions of Biplot Methodology to Discriminant Analysis".
Journal of Classification 22(1): 59–86. doi:10.1007/s0035700500067 https://link.springer.
com/article/10.1007/s00357-005-0006-7

Greenacre MJ (2010) Biplots in Practice. Fundacion BBVA, ISBN: 978-84-923846. https://
www.fbbva.es/microsite/multivariate-statistics/biplots.html

Venables WN & Ripley BD (2003) Modern Applied Statistics with S, Fourth Edition. Springer
Science & Business Media, ISBN: 0387954570, 9780387954578. https://www.mimuw.edu.pl/
~pokar/StatystykaMgr/Books/VenablesRipley_ModernAppliedStatisticsS02.pdf

Orlov K (2013) Answer to "Algebra of LDA. Fisher discrimination power of a variable and Linear
Discriminant Analysis". CrossValidated, accessed 2019-07-26. https://stats.stackexchange.
com/a/83114/68743

Greenacre M (2013) "Contribution Biplots". Journal of Computational and Graphical Statistics,
22(1): 107–122. https://amstat.tandfonline.com/doi/full/10.1080/10618600.2012.702494

See Also

MASS::lda(), from which lda_ord() is adapted

Examples

Anderson iris species data centroid
iris_centroid <- t(apply(iris[, 1:4], 2, mean))
unstandardized discriminant coefficients: the discriminant axes are linear
combinations of the centered variables
iris_lda <- lda_ord(iris[, 1:4], iris[, 5], axes.scale = "unstandardized")
linear combinations of centered variables
print(sweep(iris_lda$means, 2, iris_centroid, "-") %*% get_cols(iris_lda))
discriminant centroids
print(get_rows(iris_lda, elements = "active"))

unstandardized coefficient LDA biplot
iris_lda %>%

as_tbl_ord() %>%
augment_ord() %>%
mutate_rows(
species = grouping,
discriminant = ifelse(.element == "active", "centroid", "case")

) %>%
ggbiplot() +

https://doi.org/10.1007/s00357-005-0006-7
https://link.springer.com/article/10.1007/s00357-005-0006-7
https://link.springer.com/article/10.1007/s00357-005-0006-7
https://www.fbbva.es/microsite/multivariate-statistics/biplots.html
https://www.fbbva.es/microsite/multivariate-statistics/biplots.html
https://www.mimuw.edu.pl/~pokar/StatystykaMgr/Books/VenablesRipley_ModernAppliedStatisticsS02.pdf
https://www.mimuw.edu.pl/~pokar/StatystykaMgr/Books/VenablesRipley_ModernAppliedStatisticsS02.pdf
https://stats.stackexchange.com/a/83114/68743
https://stats.stackexchange.com/a/83114/68743
https://amstat.tandfonline.com/doi/full/10.1080/10618600.2012.702494

56 lda-ord

theme_bw() +
geom_rows_point(aes(

color = grouping,
size = discriminant, alpha = discriminant

)) +
geom_cols_vector(color = "#888888") +
geom_cols_text_radiate(aes(label = name), size = 3) +
scale_color_brewer(type = "qual", palette = 2) +
ggtitle("Unstandardized coefficient biplot of iris LDA") +
expand_limits(y = c(-3, 5))

standardized discriminant coefficients: permit comparisons across the
variables
iris_lda <- lda_ord(iris[, 1:4], iris[, 5], axes.scale = "standardized")
standardized variable contributions to discriminant axes
iris_lda %>%

as_tbl_ord() %>%
augment_ord() %>%
fortify(.matrix = "cols") %>%
dplyr::mutate(variable = name) %>%
tidyr::gather(discriminant, coefficient, LD1, LD2) %>%
ggplot(aes(x = discriminant, y = coefficient, fill = variable)) +
geom_bar(position = "dodge", stat = "identity") +
labs(y = "Standardized coefficient", x = "Linear discriminant") +
theme_bw() +
coord_flip()

standardized coefficient LDA biplot
iris_lda %>%

as_tbl_ord() %>%
augment_ord() %>%
mutate_rows(

species = grouping,
discriminant = ifelse(.element == "active", "centroid", "case")

) %>%
ggbiplot() +
theme_bw() +
geom_rows_point(aes(

color = grouping,
size = discriminant, alpha = discriminant

)) +
geom_cols_vector(color = "#888888") +
geom_cols_text_radiate(aes(label = name), size = 3) +
scale_color_brewer(type = "qual", palette = 2) +
ggtitle("Standardized coefficient biplot of iris LDA") +
expand_limits(y = c(-2, 3))

variable contributions (de-sphered discriminant coefficients): recover the
inner product relationship with the centered class centroids
iris_lda <- lda_ord(iris[, 1:4], iris[, 5], axes.scale = "contribution")
symmetric square root of within-class covariance
C_W_eig <- eigen(cov(iris[, 1:4] - iris_lda$means[iris[, 5],]))
C_W_sqrtinv <-

C_W_eig$vectors %*% diag(1/sqrt(C_W_eig$values)) %*% t(C_W_eig$vectors)

lra-ord 57

product of matrix factors (scores and loadings)
print(get_rows(iris_lda, elements = "active") %*% t(get_cols(iris_lda)))
"asymmetric" square roots of Mahalanobis distances between variables
print(sweep(iris_lda$means, 2, iris_centroid, "-") %*% C_W_sqrtinv)
contribution LDA biplot
iris_lda %>%

as_tbl_ord() %>%
augment_ord() %>%
mutate_rows(
species = grouping,
discriminant = ifelse(.element == "active", "centroid", "case")

) %>%
ggbiplot() +
theme_bw() +
geom_rows_point(aes(

color = grouping,
size = discriminant, alpha = discriminant

)) +
geom_cols_vector(color = "#888888") +
geom_cols_text_radiate(aes(label = name), size = 3) +
scale_color_brewer(type = "qual", palette = 2) +
ggtitle("Contribution biplot of iris LDA") +
expand_limits(y = c(-2, 3.5))

lra-ord Log-ratio analysis

Description

Represent log-ratios between variables based on their values on a population of cases.

Usage

lra(x, compositional = FALSE, weighted = TRUE)

S3 method for class 'lra'
print(x, nd = length(x$sv), n = 6L, ...)

S3 method for class 'lra'
screeplot(x, main = deparse1(substitute(x)), ...)

S3 method for class 'lra'
biplot(
x,
choices = c(1L, 2L),
scale = c(0, 0),
main = deparse1(substitute(x)),
var.axes = FALSE,
...

58 lra-ord

)

S3 method for class 'lra'
plot(x, main = deparse1(substitute(x)), ...)

Arguments

x A numeric matrix or rectangular data set.

compositional Logical; whether to normalize rows of x to sum to 1.

weighted Logical; whether to weight rows and columns by their sums.

nd Integer; number of shared dimensions to include in print.

n Integer; number of rows of each factor to print.
main, var.axes, ...

Parameters passed to other plotting methods (in the case of main, after being
force()d.

choices Integer; length-2 vector specifying the components to plot.

scale Numeric; values between 0 and 1 that control how inertia is conferred unto
the points: Row (i = 1L) and column (i = 2L) coordinates are scaled by sv ^
scale[[i]]. If a single value scale is passed, it is assigned to the rows while
1 - scale is assigned to the columns.

Details

Log-ratio analysis (LRA) is based on a double-centering of log-transformed data, usually weighted
by row and column totals. The technique is suitable for positive-valued variables on a common
scale (e.g. percentages). The distances between variables’ coordinates (in the full-dimensional
space) are their pairwise log-ratios. The distances between cases’ coordinates are called their log-
ratio distances, and the total variance is the weighted sum of their squares.

LRA is not implemented in standard R distributions but is a useful member of the ordination toolkit.
This is a minimal implementation following Greenacre’s (2010) exposition in Chapter 7.

Value

Given an n∗p data matrix and setting r = min(n, p), lra() returns a list of class "lra" containing
three elements:

• svThe r − 1 singular values

• row.coordsThe n ∗ (r − 1) matrix of row standard coordinates.

• column.coordsThe p ∗ (r − 1) matrix of column standard coordinates.

• row.weightsThe weights used to scale the row coordinates.

• column.weightsThe weights used to scale the column coordinates.

References

Greenacre MJ (2010) Biplots in Practice. Fundacion BBVA, ISBN: 978-84-923846. https://
www.fbbva.es/microsite/multivariate-statistics/biplots.html

https://www.fbbva.es/microsite/multivariate-statistics/biplots.html
https://www.fbbva.es/microsite/multivariate-statistics/biplots.html

methods-cancor 59

Examples

U.S. 1973 violent crime arrests
head(USArrests)
row and column subsets
state_examples <- c("Hawaii", "Mississippi", "North Dakota")
arrests <- c(1L, 2L, 4L)

pairwise log-ratios of violent crime arrests for two states
arrest_pairs <- combn(arrests, 2L)
arrest_ratios <-

USArrests[, arrest_pairs[1L,]] / USArrests[, arrest_pairs[2L,]]
colnames(arrest_ratios) <- paste(

colnames(USArrests)[arrest_pairs[1L,]], "/",
colnames(USArrests)[arrest_pairs[2L,]], sep = ""

)
arrest_logratios <- log(arrest_ratios)
arrest_logratios[state_examples,]

non-compositional log-ratio analysis
(arrests_lra <- lra(USArrests[, arrests]))
screeplot(arrests_lra)
biplot(arrests_lra, scale = c(1, 0))

compositional log-ratio analysis
(arrests_lra <- lra(USArrests[, arrests], compositional = TRUE))
biplot(arrests_lra, scale = c(1, 0))

methods-cancor Functionality for canonical correlations

Description

These methods extract data from, and attribute new data to, objects of class "cancor_ord". This
is a class introduced in this package to identify objects returned by cancor_ord(), which wraps
stats::cancor().

Usage

S3 method for class 'cancor_ord'
as_tbl_ord(x)

S3 method for class 'cancor_ord'
recover_rows(x)

S3 method for class 'cancor_ord'
recover_cols(x)

S3 method for class 'cancor_ord'

60 methods-cancor

recover_inertia(x)

S3 method for class 'cancor_ord'
recover_coord(x)

S3 method for class 'cancor_ord'
recover_conference(x)

S3 method for class 'cancor_ord'
recover_supp_rows(x)

S3 method for class 'cancor_ord'
recover_supp_cols(x)

S3 method for class 'cancor_ord'
recover_aug_rows(x)

S3 method for class 'cancor_ord'
recover_aug_cols(x)

S3 method for class 'cancor_ord'
recover_aug_coord(x)

Arguments

x An ordination object.

Details

The canonical coefficients (loadings) are obtained directly from the underlying singular value de-
composition and constitute the active elements. If canonical scores are returned, then they and the
structure correlations are made available as supplementary elements. ordr takes rows and columns
from the intraset correlations $xstructure and $ystructure, on which no intertia is conferred;
the interset correlations can be obtained by conferring inertia onto these.

A biplot of the canonical coefficients can be interpreted as approximating the X-Y inner product
matrix, inversely weighted by the X and Y variances. The canonical scores and structure coeffi-
cients are available as supplementary points if returned by cancor_ord(). These can be used to
create biplots of the case scores as linear combinations of loadings (the coefficients, in standard co-
ordinates, overlaid with the scores) or of intraset and interset correlations with respect to either data
set (the correlations with inertia conferred entirely onto rows or onto columns). Greenacre (1984)
and ter Braak (1990) describe these families, though ter Braak recommends against the first.

Value

The recovery generics recover_*() return core model components, distribution of inertia, supple-
mentary elements, and intrinsic metadata; but they require methods for each model class to tell them
what these components are.

methods-cancor 61

The generic as_tbl_ord() returns its input wrapped in the ’tbl_ord’ class. Its methods determine
what model classes it is allowed to wrap. It then provides ’tbl_ord’ methods with access to the
recoverers and hence to the model components.

References

Greenacre MJ (1984) Theory and applications of correspondence analysis. London: Academic
Press, ISBN 0-12-299050-1. http://www.carme-n.org/?sec=books5

ter Braak CJF (1990) "Interpreting canonical correlation analysis through biplots of structure cor-
relations and weights". Psychometrika 55(3), 519–531. doi:10.1007/BF02294765

See Also

Other methods for singular value decomposition-based techniques: methods-correspondence,
methods-lda, methods-lra, methods-mca, methods-prcomp, methods-svd

Other models from the stats package: methods-cmds, methods-factanal, methods-kmeans, methods-lm,
methods-prcomp, methods-princomp

Examples

data frame of life-cycle savings across countries
class(LifeCycleSavings)
head(LifeCycleSavings)
savings_pop <- LifeCycleSavings[, c("pop15", "pop75")]
savings_oec <- LifeCycleSavings[, c("sr", "dpi", "ddpi")]

canonical correlation analysis with scores and correlations included
savings_cca <- cancor_ord(savings_pop, savings_oec, scores = TRUE)
savings_cca <- augment_ord(as_tbl_ord(savings_cca))
head(get_cols(savings_cca))
head(get_cols(savings_cca, elements = "score"))
get_rows(savings_cca, elements = "structure")
get_cols(savings_cca, elements = "structure")

biplot of interset and intraset correlations with the population data
savings_cca %>%

confer_inertia("cols") %>%
ggbiplot(aes(label = name, color = .matrix)) +
theme_bw() + theme_biplot() +
geom_unit_circle() +
geom_rows_vector(arrow = NULL, elements = "structure") +
geom_cols_vector(arrow = NULL, elements = "structure", linetype = "dashed") +
geom_rows_text(elements = "structure", hjust = "outward") +
geom_cols_text(elements = "structure", hjust = "outward") +
scale_color_brewer(limits = c("rows", "cols"), type = "qual") +
expand_limits(x = c(-1, 1), y = c(-1, 1))

biplot with scores as supplemental elements
savings_cca %>%

confer_inertia("rows") %>%
ggbiplot(aes(label = name), sec.axes = "cols", scale.factor = 5L) +

http://www.carme-n.org/?sec=books5
https://doi.org/10.1007/BF02294765

62 methods-cmds

theme_biplot() +
geom_cols_vector(elements = "active") +
geom_cols_text_radiate(elements = "active") +
geom_rows_text(elements = "score", subset = seq(50L))

methods-cmds Functionality for classical multidimensional scaling objects

Description

These methods extract data from, and attribute new data to, objects of class "cmds_ord". This is
a class introduced in this package to identify objects returned by cmdscale_ord(), which wraps
stats::cmdscale().

Usage

S3 method for class 'cmds_ord'
as_tbl_ord(x)

S3 method for class 'cmds_ord'
recover_rows(x)

S3 method for class 'cmds_ord'
recover_cols(x)

S3 method for class 'cmds_ord'
recover_inertia(x)

S3 method for class 'cmds_ord'
recover_coord(x)

S3 method for class 'cmds_ord'
recover_conference(x)

S3 method for class 'cmds_ord'
recover_aug_rows(x)

S3 method for class 'cmds_ord'
recover_aug_cols(x)

S3 method for class 'cmds_ord'
recover_aug_coord(x)

Arguments

x An ordination object.

methods-correspondence 63

Value

The recovery generics recover_*() return core model components, distribution of inertia, supple-
mentary elements, and intrinsic metadata; but they require methods for each model class to tell them
what these components are.

The generic as_tbl_ord() returns its input wrapped in the ’tbl_ord’ class. Its methods determine
what model classes it is allowed to wrap. It then provides ’tbl_ord’ methods with access to the
recoverers and hence to the model components.

See Also

Other methods for eigen-decomposition-based techniques: methods-eigen, methods-factanal,
methods-princomp

Other models from the stats package: methods-cancor, methods-factanal, methods-kmeans,
methods-lm, methods-prcomp, methods-princomp

Examples

'dist' object (matrix of road distances) of large American cities
class(UScitiesD)
print(UScitiesD)

use multidimensional scaling to infer artificial planar coordinates
UScitiesD %>%

cmdscale_ord(k = 2) %>%
as_tbl_ord() %>%
print() -> usa_mds

recover (equivalent) matrices of row and column artificial coordinates
get_rows(usa_mds)
get_cols(usa_mds)

augment ordination with point names
(usa_mds <- augment_ord(usa_mds))

reorient biplot to conventional compass
usa_mds %>%

negate_ord(c(1, 2)) %>%
ggbiplot() +
geom_cols_text(aes(label = name), size = 3) +
ggtitle("MDS biplot of distances between U.S. cities")

methods-correspondence

Functionality for correspondence analysis (’correspondence’) objects

Description

These methods extract data from, and attribute new data to, objects of class "correspondence"
from the MASS package.

64 methods-correspondence

Usage

S3 method for class 'correspondence'
as_tbl_ord(x)

S3 method for class 'correspondence'
recover_rows(x)

S3 method for class 'correspondence'
recover_cols(x)

S3 method for class 'correspondence'
recover_inertia(x)

S3 method for class 'correspondence'
recover_conference(x)

S3 method for class 'correspondence'
recover_coord(x)

S3 method for class 'correspondence'
recover_aug_rows(x)

S3 method for class 'correspondence'
recover_aug_cols(x)

S3 method for class 'correspondence'
recover_aug_coord(x)

Arguments

x An ordination object.

Value

The recovery generics recover_*() return core model components, distribution of inertia, supple-
mentary elements, and intrinsic metadata; but they require methods for each model class to tell them
what these components are.

The generic as_tbl_ord() returns its input wrapped in the ’tbl_ord’ class. Its methods determine
what model classes it is allowed to wrap. It then provides ’tbl_ord’ methods with access to the
recoverers and hence to the model components.

See Also

Other methods for singular value decomposition-based techniques: methods-cancor, methods-lda,
methods-lra, methods-mca, methods-prcomp, methods-svd

Other models from the MASS package: methods-lda, methods-mca

methods-eigen 65

Examples

table of hair and eye color data collapsed by sex
data(quine, package = "MASS")
class(quine)
head(quine)

use correspondence analysis to construct row and column profiles
(quine_ca <- MASS::corresp(~ Age + Eth, data = quine))
(quine_ca <- as_tbl_ord(quine_ca))

recover row and column profiles
get_rows(quine_ca)
get_cols(quine_ca)

augment profiles with names, masses, distances, and inertias
(quine_ca <- augment_ord(quine_ca))

methods-eigen Functionality for eigen-decompositions

Description

These methods extract data from, and attribute new data to, objects of class "eigen" returned by
base::eigen() when the parameter only.values is set to FALSE or of class "eigen_ord" returned
by eigen_ord().

Usage

S3 method for class 'eigen'
as_tbl_ord(x)

S3 method for class 'eigen'
recover_rows(x)

S3 method for class 'eigen'
recover_cols(x)

S3 method for class 'eigen'
recover_inertia(x)

S3 method for class 'eigen'
recover_coord(x)

S3 method for class 'eigen'
recover_conference(x)

S3 method for class 'eigen_ord'
recover_aug_rows(x)

66 methods-eigen

S3 method for class 'eigen_ord'
recover_aug_cols(x)

S3 method for class 'eigen'
recover_aug_coord(x)

S3 method for class 'eigen_ord'
as_tbl_ord(x)

S3 method for class 'eigen_ord'
recover_rows(x)

S3 method for class 'eigen_ord'
recover_cols(x)

S3 method for class 'eigen_ord'
recover_inertia(x)

S3 method for class 'eigen_ord'
recover_coord(x)

S3 method for class 'eigen_ord'
recover_conference(x)

S3 method for class 'eigen_ord'
recover_aug_rows(x)

S3 method for class 'eigen_ord'
recover_aug_cols(x)

S3 method for class 'eigen_ord'
recover_aug_coord(x)

Arguments

x An ordination object.

Details

base::eigen() usually returns an object of class "eigen", which contains the numerical eigende-
composition without annotations such as row and column names. To facilitate downstream analysis,
eigen_ord() returns a modified ’eigen’ object with row names taken (if available) from the original
data and column names indicating the integer index of each eigenvector.

Value

The recovery generics recover_*() return core model components, distribution of inertia, supple-
mentary elements, and intrinsic metadata; but they require methods for each model class to tell them

methods-eigen 67

what these components are.

The generic as_tbl_ord() returns its input wrapped in the ’tbl_ord’ class. Its methods determine
what model classes it is allowed to wrap. It then provides ’tbl_ord’ methods with access to the
recoverers and hence to the model components.

See Also

Other methods for eigen-decomposition-based techniques: methods-cmds, methods-factanal,
methods-princomp

Other models from the base package: methods-svd

Examples

subset QS data to rank variables
qs_ranks <- subset(

qswur_usa,
complete.cases(qswur_usa),
select = 8:13

)
head(qs_ranks)

eigendecomposition of Kendall correlation matrix
qs_ranks %>%

cor(method = "kendall") %>%
eigen() %>%
print() -> qs_eigen

recover eigenvectors
get_rows(qs_eigen)
identical(get_cols(qs_eigen), get_rows(qs_eigen))

wrap as a 'tbl_ord'
as_tbl_ord(qs_eigen)

same eigendecomposition, preserving row names and adding column names
qs_ranks %>%

cor(method = "kendall") %>%
eigen_ord() %>%
print() -> qs_eigen

wrap as a 'tbl_ord' and augment with dimension names
augment_ord(as_tbl_ord(qs_eigen))

decomposition returns pure eigenvectors
get_conference(qs_eigen)

68 methods-factanal

methods-factanal Functionality for factor analysis (’factanal’) objects

Description

These methods extract data from, and attribute new data to, objects of class "factanal" as returned
by stats::factanal().

Usage

S3 method for class 'factanal'
as_tbl_ord(x)

S3 method for class 'factanal'
recover_rows(x)

S3 method for class 'factanal'
recover_cols(x)

S3 method for class 'factanal'
recover_inertia(x)

S3 method for class 'factanal'
recover_coord(x)

S3 method for class 'factanal'
recover_conference(x)

S3 method for class 'factanal'
recover_supp_rows(x)

S3 method for class 'factanal'
recover_aug_rows(x)

S3 method for class 'factanal'
recover_aug_cols(x)

S3 method for class 'factanal'
recover_aug_coord(x)

Arguments

x An ordination object.

Details

Factor analysis of a data matrix relies on an an eigendecomposition of its correlation matrix, whose
eigenvectors (up to weighting) comprise the variable loadings. For this reason, both row and column

methods-factanal 69

recoverers retrieve the loadings and inertia is evenly distributed between them. When computed
and returned by stats::factanal(), the case scores are accessible as supplementary elements.
Redistribution of inertia commutes through both score calculations.

Value

The recovery generics recover_*() return core model components, distribution of inertia, supple-
mentary elements, and intrinsic metadata; but they require methods for each model class to tell them
what these components are.

The generic as_tbl_ord() returns its input wrapped in the ’tbl_ord’ class. Its methods determine
what model classes it is allowed to wrap. It then provides ’tbl_ord’ methods with access to the
recoverers and hence to the model components.

See Also

Other methods for eigen-decomposition-based techniques: methods-cmds, methods-eigen, methods-princomp

Other models from the stats package: methods-cancor, methods-cmds, methods-kmeans, methods-lm,
methods-prcomp, methods-princomp

Examples

data frame of Swiss fertility and socioeconomic indicators
class(swiss)
head(swiss)
perform factor analysis
swiss_fa <- factanal(~ ., factors = 2L, data = swiss, scores = "regression")

wrap as a 'tbl_ord' object
(swiss_fa <- as_tbl_ord(swiss_fa))

recover loadings
get_rows(swiss_fa, elements = "active")
get_cols(swiss_fa)
recover scores
head(get_rows(swiss_fa, elements = "score"))

augment column loadings with uniquenesses
(swiss_fa <- augment_ord(swiss_fa))

symmetric biplot
swiss_fa %>%

ggbiplot() +
theme_bw() +
geom_cols_vector(aes(color = uniqueness)) +
geom_cols_text_radiate(aes(label = name)) +
expand_limits(x = c(-2, 2.5), y = c(-1.5, 2))

70 methods-kmeans

methods-kmeans Functionality for k-means clustering (’kmeans’) objects

Description

These methods extract data from, and attribute new data to, objects of class "kmeans" as returned
by stats::kmeans().

Usage

S3 method for class 'kmeans'
as_tbl_ord(x)

S3 method for class 'kmeans'
recover_rows(x)

S3 method for class 'kmeans'
recover_cols(x)

S3 method for class 'kmeans'
recover_coord(x)

S3 method for class 'kmeans'
recover_aug_rows(x)

S3 method for class 'kmeans'
recover_aug_cols(x)

S3 method for class 'kmeans'
recover_aug_coord(x)

Arguments

x An ordination object.

Value

The recovery generics recover_*() return core model components, distribution of inertia, supple-
mentary elements, and intrinsic metadata; but they require methods for each model class to tell them
what these components are.

The generic as_tbl_ord() returns its input wrapped in the ’tbl_ord’ class. Its methods determine
what model classes it is allowed to wrap. It then provides ’tbl_ord’ methods with access to the
recoverers and hence to the model components.

methods-kmeans 71

See Also

Other methods for idiosyncratic techniques: methods-lm

Other models from the stats package: methods-cancor, methods-cmds, methods-factanal, methods-lm,
methods-prcomp, methods-princomp

Examples

data frame of Anderson iris species measurements
class(iris)
head(iris)
compute 3-means clustering on scaled iris measurements
set.seed(5601L)
iris %>%

subset(select = -Species) %>%
scale() %>%
kmeans(centers = 3) %>%
print() -> iris_km

visualize clusters using PCA
iris %>%

subset(select = -Species) %>%
prcomp() %>%
as_tbl_ord() %>%
mutate_rows(cluster = iris_km$cluster) %>%
ggbiplot() +
geom_rows_point(aes(color = factor(as.character(as.integer(cluster)),

levels = as.character(seq(3L))))) +
scale_color_brewer(type = "qual", name = "cluster")

wrap as a 'tbl_ord' object
(iris_km_ord <- as_tbl_ord(iris_km))

augment everything with names, observations with cluster assignment
(iris_km_ord <- augment_ord(iris_km_ord))

summarize clusters with standard deviation
iris_km_ord %>%

tidy() %>%
transform(sdev = sqrt(withinss / size))

discriminate between clusters 2 and 3
iris_km_ord %>%

ggbiplot(aes(x = `2`, y = `3`), color = factor(.cluster)) +
geom_jitter(stat = "rows", aes(shape = cluster), width = .2, height = .2) +
geom_cols_axis(aes(color = `1`, label = name),

text_size = 2, text_dodge = .1,
label_size = 3, label_alpha = .5) +

scale_x_continuous(expand = expansion(mult = .8)) +
scale_y_continuous(expand = expansion(mult = .5)) +
ggtitle(

"Measurement loadings onto clusters 2 and 3",
"Color indicates loadings onto cluster 1"

72 methods-lda

)

methods-lda Functionality for linear discriminant analysis (’lda’) objects

Description

These methods extract data from, and attribute new data to, objects of class "lda" and "lda_ord"
as returned by MASS::lda() and lda_ord().

Usage

S3 method for class 'lda'
as_tbl_ord(x)

S3 method for class 'lda_ord'
as_tbl_ord(x)

S3 method for class 'lda'
recover_rows(x)

S3 method for class 'lda_ord'
recover_rows(x)

S3 method for class 'lda'
recover_cols(x)

S3 method for class 'lda_ord'
recover_cols(x)

S3 method for class 'lda'
recover_inertia(x)

S3 method for class 'lda_ord'
recover_inertia(x)

S3 method for class 'lda'
recover_coord(x)

S3 method for class 'lda_ord'
recover_coord(x)

S3 method for class 'lda'
recover_conference(x)

S3 method for class 'lda_ord'
recover_conference(x)

methods-lda 73

S3 method for class 'lda'
recover_aug_rows(x)

S3 method for class 'lda_ord'
recover_aug_rows(x)

S3 method for class 'lda'
recover_aug_cols(x)

S3 method for class 'lda_ord'
recover_aug_cols(x)

S3 method for class 'lda'
recover_aug_coord(x)

S3 method for class 'lda_ord'
recover_aug_coord(x)

S3 method for class 'lda'
recover_supp_rows(x)

S3 method for class 'lda_ord'
recover_supp_rows(x)

Arguments

x An ordination object.

Details

See lda-ord for details.

Value

The recovery generics recover_*() return core model components, distribution of inertia, supple-
mentary elements, and intrinsic metadata; but they require methods for each model class to tell them
what these components are.

The generic as_tbl_ord() returns its input wrapped in the ’tbl_ord’ class. Its methods determine
what model classes it is allowed to wrap. It then provides ’tbl_ord’ methods with access to the
recoverers and hence to the model components.

See Also

Other methods for singular value decomposition-based techniques: methods-cancor, methods-correspondence,
methods-lra, methods-mca, methods-prcomp, methods-svd

Other models from the MASS package: methods-correspondence, methods-mca

74 methods-lm

Examples

data frame of Anderson iris species measurements
class(iris)
head(iris)

default (unstandardized discriminant) coefficients
lda_ord(iris[, 1:4], iris[, 5]) %>%

as_tbl_ord() %>%
print() -> iris_lda

recover centroid coordinates and measurement discriminant coefficients
get_rows(iris_lda, elements = "active")
head(get_rows(iris_lda, elements = "score"))
get_cols(iris_lda)

augment ordination with centroid and measurement names
augment_ord(iris_lda)

methods-lm Functionality for linear model objects

Description

These methods extract data from, and attribute new data to, objects of class "lm", "glm", and "mlm"
as returned by stats::lm() and stats::glm().

Usage

S3 method for class 'lm'
as_tbl_ord(x)

S3 method for class 'lm'
recover_rows(x)

S3 method for class 'lm'
recover_cols(x)

S3 method for class 'lm'
recover_coord(x)

S3 method for class 'lm'
recover_aug_rows(x)

S3 method for class 'lm'
recover_aug_cols(x)

S3 method for class 'lm'
recover_aug_coord(x)

methods-lm 75

S3 method for class 'glm'
recover_aug_rows(x)

S3 method for class 'mlm'
recover_rows(x)

S3 method for class 'mlm'
recover_cols(x)

S3 method for class 'mlm'
recover_coord(x)

S3 method for class 'mlm'
recover_aug_rows(x)

S3 method for class 'mlm'
recover_aug_cols(x)

S3 method for class 'mlm'
recover_aug_coord(x)

Arguments

x An ordination object.

Value

The recovery generics recover_*() return core model components, distribution of inertia, supple-
mentary elements, and intrinsic metadata; but they require methods for each model class to tell them
what these components are.

The generic as_tbl_ord() returns its input wrapped in the ’tbl_ord’ class. Its methods determine
what model classes it is allowed to wrap. It then provides ’tbl_ord’ methods with access to the
recoverers and hence to the model components.

See Also

Other methods for idiosyncratic techniques: methods-kmeans

Other models from the stats package: methods-cancor, methods-cmds, methods-factanal, methods-kmeans,
methods-prcomp, methods-princomp

Examples

Motor Trend design and performance data
head(mtcars)
regression analysis of performance measures on design specifications
mtcars_centered <- scale(mtcars, scale = FALSE)
mtcars_centered %>%

as.data.frame() %>%

76 methods-lra

lm(formula = mpg ~ wt + cyl) %>%
print() -> mtcars_lm

wrap as a 'tbl_ord' object
(mtcars_lm_ord <- as_tbl_ord(mtcars_lm))
augment everything with names, predictors with observation stats
augment_ord(mtcars_lm_ord)
calculate influences as the squares of weighted residuals
mutate_rows(augment_ord(mtcars_lm_ord), influence = wt.res^2)

regression biplot with performance isolines
mtcars_lm_ord %>%

augment_ord() %>%
mutate_cols(center = attr(mtcars_centered, "scaled:center")[name]) %>%
mutate_rows(influence = wt.res^2) %T>% print() %>%
ggbiplot(aes(x = wt, y = cyl, intercept = `(Intercept)`)) +
#theme_biplot() +
geom_origin(marker = "circle", radius = unit(0.02, "snpc")) +
geom_rows_point(aes(color = influence)) +
geom_cols_vector() +
geom_cols_isoline(aes(center = center), by = .5, hjust = -.1) +
ggtitle(

"Weight isolines with data colored by importance",
"Regressing gas mileage onto weight and number of cylinders"

)

methods-lra Functionality for log-ratio analysis (’lra’) objects

Description

These methods extract data from, and attribute new data to, objects of class "lra", a class in-
troduced in this package to organize the singular value decomposition of a double-centered log-
transformed data matrix output by lra().

Usage

S3 method for class 'lra'
as_tbl_ord(x)

S3 method for class 'lra'
recover_rows(x)

S3 method for class 'lra'
recover_cols(x)

S3 method for class 'lra'
recover_inertia(x)

methods-lra 77

S3 method for class 'lra'
recover_coord(x)

S3 method for class 'lra'
recover_conference(x)

S3 method for class 'lra'
recover_aug_rows(x)

S3 method for class 'lra'
recover_aug_cols(x)

S3 method for class 'lra'
recover_aug_coord(x)

Arguments

x An ordination object.

Value

The recovery generics recover_*() return core model components, distribution of inertia, supple-
mentary elements, and intrinsic metadata; but they require methods for each model class to tell them
what these components are.

The generic as_tbl_ord() returns its input wrapped in the ’tbl_ord’ class. Its methods determine
what model classes it is allowed to wrap. It then provides ’tbl_ord’ methods with access to the
recoverers and hence to the model components.

See Also

Other methods for singular value decomposition-based techniques: methods-cancor, methods-correspondence,
methods-lda, methods-mca, methods-prcomp, methods-svd

Examples

data frame of violent crime arrests in the United States
class(USArrests)
head(USArrests)
get state abbreviation data
state <- data.frame(

name = state.name,
abb = state.abb

)

compute (non-compositional, unweighted) log-ratio analysis
USArrests %>%

subset(select = -UrbanPop) %>%
lra() %>%
as_tbl_ord() %>%
print() -> arrests_lra

78 methods-mca

augment log-ratio profiles with names and join state abbreviations
arrests_lra %>%

augment_ord() %>%
left_join_rows(state, by = "name") %>%
print() -> arrests_lra

recover state and arrest profiles
head(get_rows(arrests_lra))
get_cols(arrests_lra)
initially, inertia is conferred on neither factor
get_conference(arrests_lra)

row-principal biplot
arrests_lra %>%

confer_inertia("rows") %>%
ggbiplot(aes(color = .matrix), sec.axes = "cols", scale.factor = 1/20) +
scale_color_manual(values = c("tomato4", "turquoise4")) +
theme_bw() +
geom_rows_text(aes(label = abb), size = 3, alpha = .75) +
geom_cols_polygon(fill = NA, linetype = "dashed") +
geom_cols_text(aes(label = name, size = weight), fontface = "bold") +
scale_size_area(guide = "none") +
ggtitle(
"Non-compositional LRA of violent crime arrest rates",
"United States, 1973"

) +
expand_limits(x = c(-.35)) +
guides(color = "none")

methods-mca Functionality for multiple correspondence analysis (’mca’) objects

Description

These methods extract data from, and attribute new data to, objects of class "mca" from the MASS
package.

Usage

S3 method for class 'mca'
as_tbl_ord(x)

S3 method for class 'mca'
recover_rows(x)

S3 method for class 'mca'
recover_cols(x)

methods-mca 79

S3 method for class 'mca'
recover_inertia(x)

S3 method for class 'mca'
recover_conference(x)

S3 method for class 'mca'
recover_coord(x)

S3 method for class 'mca'
recover_supp_rows(x)

S3 method for class 'mca'
recover_aug_rows(x)

S3 method for class 'mca'
recover_aug_cols(x)

S3 method for class 'mca'
recover_aug_coord(x)

Arguments

x An ordination object.

Details

Multiple correspondence analysis (MCA) relies on a singular value decomposition of the indicator
matrix X of a table of several categorical variables, scaled by its column totals. MASS::mca()
returns the SVD factors UD and V as the row weights $fs, on which the inertia is conferred,
and the column coordinates $cs. The row coordinates $rs are obtained as XV and accessible as
supplementary elements.

Value

The recovery generics recover_*() return core model components, distribution of inertia, supple-
mentary elements, and intrinsic metadata; but they require methods for each model class to tell them
what these components are.

The generic as_tbl_ord() returns its input wrapped in the ’tbl_ord’ class. Its methods determine
what model classes it is allowed to wrap. It then provides ’tbl_ord’ methods with access to the
recoverers and hence to the model components.

See Also

Other methods for singular value decomposition-based techniques: methods-cancor, methods-correspondence,
methods-lda, methods-lra, methods-prcomp, methods-svd

Other models from the MASS package: methods-correspondence, methods-lda

80 methods-prcomp

Examples

table of admissions and rejections from UC Berkeley
class(UCBAdmissions)
ucb_admissions <- as.data.frame(UCBAdmissions)
ucb_admissions <-

ucb_admissions[rep(seq(nrow(ucb_admissions)), ucb_admissions$Freq), -4L]
head(ucb_admissions)
perform multiple correspondence analysis
ucb_admissions %>%

MASS::mca() %>%
as_tbl_ord() %>%
augment profiles with names, masses, distances, and inertias
augment_ord() %>%
print() -> admissions_mca

recover row and column coordinates and row weights
head(get_rows(admissions_mca, elements = "score"))
get_cols(admissions_mca)
head(get_rows(admissions_mca))

column-standard biplot of factor levels
admissions_mca %>%

ggbiplot() +
theme_bw() + theme_biplot() +
geom_origin() +
#geom_rows_point(stat = "unique") +
geom_cols_point(aes(color = factor, shape = factor)) +
geom_cols_text_repel(aes(label = level, color = factor),

show.legend = FALSE) +
scale_color_brewer(palette = "Dark2") +
scale_size_area(guide = "none") +
labs(color = "Factor level", shape = "Factor level")

methods-prcomp Functionality for principal components analysis (’prcomp’) objects

Description

These methods extract data from, and attribute new data to, objects of class "prcomp" as returned
by stats::prcomp().

Usage

S3 method for class 'prcomp'
as_tbl_ord(x)

S3 method for class 'prcomp'
recover_rows(x)

methods-prcomp 81

S3 method for class 'prcomp'
recover_cols(x)

S3 method for class 'prcomp'
recover_inertia(x)

S3 method for class 'prcomp'
recover_coord(x)

S3 method for class 'prcomp'
recover_conference(x)

S3 method for class 'prcomp'
recover_aug_rows(x)

S3 method for class 'prcomp'
recover_aug_cols(x)

S3 method for class 'prcomp'
recover_aug_coord(x)

Arguments

x An ordination object.

Value

The recovery generics recover_*() return core model components, distribution of inertia, supple-
mentary elements, and intrinsic metadata; but they require methods for each model class to tell them
what these components are.

The generic as_tbl_ord() returns its input wrapped in the ’tbl_ord’ class. Its methods determine
what model classes it is allowed to wrap. It then provides ’tbl_ord’ methods with access to the
recoverers and hence to the model components.

Author(s)

Emily Paul

See Also

Other methods for singular value decomposition-based techniques: methods-cancor, methods-correspondence,
methods-lda, methods-lra, methods-mca, methods-svd

Other models from the stats package: methods-cancor, methods-cmds, methods-factanal, methods-kmeans,
methods-lm, methods-princomp

Examples

data frame of Anderson iris species measurements
class(iris)

82 methods-princomp

head(iris)

compute scaled row-principal components of scaled measurements
iris[, -5] %>%

prcomp(scale = TRUE) %>%
as_tbl_ord() %>%
print() -> iris_pca

recover observation principal coordinates and measurement standard coordinates
head(get_rows(iris_pca))
get_cols(iris_pca)

augment measurements with names and scaling parameters
(iris_pca <- augment_ord(iris_pca))

methods-princomp Functionality for principal components analysis (’princomp’) objects

Description

These methods extract data from, and attribute new data to, objects of class "princomp" as returned
by stats::princomp().

Usage

S3 method for class 'princomp'
as_tbl_ord(x)

S3 method for class 'princomp'
recover_rows(x)

S3 method for class 'princomp'
recover_cols(x)

S3 method for class 'princomp'
recover_inertia(x)

S3 method for class 'princomp'
recover_coord(x)

S3 method for class 'princomp'
recover_conference(x)

S3 method for class 'princomp'
recover_supp_rows(x)

S3 method for class 'princomp'
recover_aug_rows(x)

methods-princomp 83

S3 method for class 'princomp'
recover_aug_cols(x)

S3 method for class 'princomp'
recover_aug_coord(x)

Arguments

x An ordination object.

Details

Principal components analysis (PCA), as performed by stats::princomp(), relies on an eigen-
value decomposition (EVD) of the covariance matrix XTX of a data set X . stats::princomp()
returns the EVD factor V as the loadings $loadings. The scores $scores are obtained as XV and
are accessible as supplementary elements.

Value

The recovery generics recover_*() return core model components, distribution of inertia, supple-
mentary elements, and intrinsic metadata; but they require methods for each model class to tell them
what these components are.

The generic as_tbl_ord() returns its input wrapped in the ’tbl_ord’ class. Its methods determine
what model classes it is allowed to wrap. It then provides ’tbl_ord’ methods with access to the
recoverers and hence to the model components.

Author(s)

Emily Paul, John Gracey

See Also

Other methods for eigen-decomposition-based techniques: methods-cmds, methods-eigen, methods-factanal

Other models from the stats package: methods-cancor, methods-cmds, methods-factanal, methods-kmeans,
methods-lm, methods-prcomp

Examples

data frame of Anderson iris species measurements
class(iris)
head(iris)

compute unscaled row-principal components of scaled measurements
iris[, -5] %>%

princomp() %>%
as_tbl_ord() %>%
print() -> iris_pca

recover observation principal coordinates and measurement standard coordinates

84 methods-svd

head(get_rows(iris_pca))
get_cols(iris_pca)

augment measurement coordinates with names and scaling parameters
(iris_pca <- augment_ord(iris_pca))

methods-svd Functionality for singular value decompositions

Description

These methods extract data from, and attribute new data to, objects of class "svd_ord" returned by
svd_ord().

Usage

S3 method for class 'svd_ord'
as_tbl_ord(x)

S3 method for class 'svd_ord'
recover_rows(x)

S3 method for class 'svd_ord'
recover_cols(x)

S3 method for class 'svd_ord'
recover_inertia(x)

S3 method for class 'svd_ord'
recover_coord(x)

S3 method for class 'svd_ord'
recover_conference(x)

S3 method for class 'svd_ord'
recover_aug_rows(x)

S3 method for class 'svd_ord'
recover_aug_cols(x)

S3 method for class 'svd_ord'
recover_aug_coord(x)

Arguments

x An ordination object.

negation 85

Value

The recovery generics recover_*() return core model components, distribution of inertia, supple-
mentary elements, and intrinsic metadata; but they require methods for each model class to tell them
what these components are.

The generic as_tbl_ord() returns its input wrapped in the ’tbl_ord’ class. Its methods determine
what model classes it is allowed to wrap. It then provides ’tbl_ord’ methods with access to the
recoverers and hence to the model components.

See Also

Other methods for singular value decomposition-based techniques: methods-cancor, methods-correspondence,
methods-lda, methods-lra, methods-mca, methods-prcomp

Other models from the base package: methods-eigen

Examples

matrix of U.S. personal expenditure data
class(USPersonalExpenditure)
print(USPersonalExpenditure)
singular value decomposition into row and column coordinates
USPersonalExpenditure %>%

svd_ord() %>%
as_tbl_ord() %>%
print() -> spend_svd

recover matrices of row and column coordinates
get_rows(spend_svd)
get_cols(spend_svd)

augment with row and column names
augment_ord(spend_svd)
initial matrix decomposition confers no inertia to coordinates
get_conference(spend_svd)

negation Negation of ordination axes

Description

Negate the coordinates of a subset of ordination axes in both row and column singular vectors.

Usage

get_negation(x)

revert_negation(x)

negate_ord(x, negation = NULL)

86 negation

negate_to_first_orthant(x, .matrix)

Arguments

x A tbl_ord.

negation Integer vector of coordinates to negate.

.matrix A character string partially matched (lowercase) to several indicators for one
or both matrices in a matrix decomposition used for ordination. The standard
values are "rows", "cols", and "dims" (for both).

Details

For purposes of comparison and visualization, it can be useful to negate the (already artificial)
coordinates of an ordination, either by fixed criteria or to better align with another basis (matrix) of
coordinates. negate_ord() allows the user to negate specified coordinates of an ordination.

get_negation() accesses the negations of an ordination, an integer vector of 1s and -1s stored as
a "negate" attribute.

Value

negate_ord() and negate_to_first_orthant() return a tbl_ord with certain axes negated but
the wrapped model unchanged. get_negation() returns the current negations. revert_negation()
returns the tbl_ord without any manual negations.

A tbl_ord; the wrapped model is unchanged.

Examples

(pca <- ordinate(iris, cols = 1:4, prcomp))
ggbiplot(pca) + geom_rows_point() + geom_cols_vector()

manually negate second coordinate
(pca_neg <- negate_ord(pca, 2))
ggbiplot(pca_neg) + geom_rows_point() + geom_cols_vector()

NB: 'prcomp' method takes precedence; negations are part of the wrapper
biplot(pca)
biplot(pca_neg)

negate to the first orthant
(pca_orth <- negate_to_first_orthant(pca, "v"))
get_negation(pca_orth)

ordinate 87

ordinate Fit an ordination model to a data object

Description

This is a convenience function to fit an ordination model to a data object, wrap the result as a
tbl_ord, and annotate this output with metadata from the model and possibly from the data.

Usage

ordinate(x, model, ...)

Default S3 method:
ordinate(x, model, ...)

S3 method for class 'array'
ordinate(x, model, ...)

S3 method for class 'table'
ordinate(x, model, ...)

S3 method for class 'data.frame'
ordinate(x, model, cols, augment, ...)

S3 method for class 'dist'
ordinate(x, model, ...)

Arguments

x A data object to be passed to the model, such as an array, table, data.frame, or
stats::dist.

model An ordination function whose output is coercible to class ’tbl_ord’, or a sym-
bol or character string (handled by match.fun()). Alternatively, a formula ~
fun(., ...) where fun is such a function and other arguments are explicit,
which will be evaluated with x in place of ..

... Additional arguments passed to model.

cols <tidy-select> If x is a data frame, columns to pass to model. If missing, all
columns are used.

augment <tidy-select> If x is a data frame, columns to augment to the row data of the
ordination. If missing, all columns not included in cols will be augmented.

Details

The default method fits the specified model to the provided data object, wraps the result as a tbl_ord,
and augments this output with any intrinsic metadata from the model via augment_ord().

88 ordr-ggproto

The default method is used for most classes, though this may change in future. The data.frame
method allows the user to specify what columns to include in the model and what columns with
which to annotate the output.

Value

An augmented tbl_ord.

Examples

LRA of arrest data
ordinate(USArrests, cols = c(Murder, Rape, Assault), lra)

CMDS of inter-city distance data
ordinate(UScitiesD, cmdscale_ord, k = 3L)

PCA of iris data
ordinate(iris, princomp, cols = -Species, augment = c(Sepal.Width, Species))
ordinate(iris, cols = 1:4, ~ prcomp(., center = TRUE, scale. = TRUE))

CA of hair & eye color data
haireye <- as.data.frame(rowSums(HairEyeColor, dims = 2L))
ordinate(haireye, MASS::corresp, cols = everything())

FA of Swiss social data
ordinate(swiss, model = factanal, factors = 2L, scores = "Bartlett")

LDA of iris data
ordinate(iris, ~ lda_ord(.[, 1:4], .[, 5], ret.x = TRUE))

CCA of savings data
ordinate(

LifeCycleSavings[, c("pop15", "pop75")],
second data set must be handled as an additional parameter to `model`
y = LifeCycleSavings[, c("sr", "dpi", "ddpi")],
model = cancor_ord, scores = TRUE

)

ordr-ggproto ggproto classes created and adapted for ordr

Description

In addition to geometric element layers (geoms) based on base-ggplot2 layers like geom_point()
but specified to matrix factors as geom_row_point(), ordr introduces ggproto classes for some
additional geometric elements commonly used in biplots. The factor-specific geoms invoke the
statistical transformation layers (stats) stat_rows() and stat_cols(), which specify the matrix
factor. Because each ggplot layer consists of only one stat and one geom, this necessitates that
ggproto classes for new stats must also come in *Rows and *Cols flavors.

plot.tbl_ord 89

See Also

ggplot2::ggplot2-ggproto and ggplot2::ggproto for explanations of base ggproto classes in gg-
plot2 and how to create new ones.

plot.tbl_ord Plot and biplot methods for ’tbl_ord’ objects

Description

Adapt stats ’prcomp’ and ’princomp’ methods for plot(), screeplot(), and biplot() generics
to ’tbl_ord’ objects.

Usage

S3 method for class 'tbl_ord'
plot(x, main = deparse(substitute(x)), ...)

S3 method for class 'tbl_ord'
screeplot(x, main = deparse(substitute(x)), ...)

S3 method for class 'tbl_ord'
biplot(x, main = deparse(substitute(x)), ...)

Arguments

x A ’tbl_ord’ object.

main A main title for the plot, passed to other methods (included to enable parsing of
object name).

... Additional arguments passed to other methods.

Details

These methods defer to any plot() and biplot() methods for the original, underlying model
classes of ’tbl_ord’ objects. If none are found: Following the examples of stats::plot.prcomp()
and stats::plot.princomp(), plot.tbl_ord() calls on stats::screeplot() to produce a
scree plot of the decomposition of variance in the singular value decomposition. Similarly follow-
ing stats::biplot.prcomp() and stats::biplot.princomp(), biplot.tbl_ord() produces a
biplot of both rows and columns, using text labels when available and markers otherwise, with rows
and columns distinguished by color and no additional annotation (e.g. vectors). The biplot confers
inertia according to get_conference() unless the proportions do not sum to 1, in which case it
produces a symmetric biplot (inertia conferred equally to rows and columns).

Value

Nothing, but a plot is produced on the current graphics device.

90 qswur_usa

Examples

note: behavior depends on installed packages with class-specific methods

class 'prcomp'
iris_pca <- prcomp(iris[, -5L], scale = TRUE)
iris_pca_ord <- as_tbl_ord(iris_pca)
plot(iris_pca)
plot(iris_pca_ord)
screeplot(iris_pca)
screeplot(iris_pca_ord)
biplot(iris_pca)
biplot(iris_pca_ord)

class 'correspondence'
haireye_ca <- MASS::corresp(rowSums(HairEyeColor, dims = 2L), nf = 2L)
haireye_ca_ord <- as_tbl_ord(haireye_ca)
plot(haireye_ca)
plot(haireye_ca_ord)
no `screeplot()` method for class 'correspondence'
screeplot(haireye_ca_ord)
biplot(haireye_ca)
biplot(haireye_ca_ord)

qswur_usa U.S. university rankings

Description

Classifications and rankings of U.S. universities for the years 2017–2020.

Usage

data(qswur_usa)

Format

A tibble of 13 variables on 612 cases:

year year of rankings

institution institution of higher learning

size size category of institution

focus subject range of institution

res research intensity of institution

age age classification of institution

status status of institution

rk_academic rank by academic reputation

recoverers 91

rk_employer rank by employer reputation

rk_ratio rank by faculty–student ratio

rk_citations rank by citations per faculty

rk_intl_faculty rank by international faculty ratio

rk_intl_students rank by international student ratio

Details

Ranking data were obtained from the public QS website.

Source

Quacquarelli Symonds (2021).

References

Quacquarelli Symonds (2021) "University Rankings". TopUniversities.com https://www.topuniversities.
com/university-rankings.

Examples

subset QS data to rank variables
head(qswur_usa)
qs_ranks <- subset(

qswur_usa,
complete.cases(qswur_usa),
select = 8:13

)
calculate Kendall correlation matrix
qs_cor <- cor(qs_ranks, method = "kendall")

calculate eigendecomposition
qs_eigen <- eigen_ord(qs_cor)
view correlations as cosines of biplot vectors
biplot(x = qs_eigen$vectors, y = qs_eigen$vectors, col = c(NA, "black"))

recoverers Access factors, coordinates, and metadata from ordination objects

Description

These functions return information about the matrix factorization underlying an ordination.

https://www.topuniversities.com/university-rankings
https://www.topuniversities.com/university-rankings

92 recoverers

Usage

recover_rows(x)

recover_cols(x)

Default S3 method:
recover_rows(x)

Default S3 method:
recover_cols(x)

S3 method for class 'data.frame'
recover_rows(x)

S3 method for class 'data.frame'
recover_cols(x)

get_rows(x, elements = "all")

get_cols(x, elements = "all")

S3 method for class 'tbl_ord'
as.matrix(x, ..., .matrix, elements = "all")

recover_inertia(x)

Default S3 method:
recover_inertia(x)

recover_coord(x)

Default S3 method:
recover_coord(x)

S3 method for class 'data.frame'
recover_coord(x)

get_coord(x)

get_inertia(x)

S3 method for class 'tbl_ord'
dim(x)

Arguments

x An object of class ’tbl_ord’.

elements Character vector; which elements of each factor for which to render graphi-

recoverers 93

cal elements. One of "all" (the default), "active", or any supplementary
element type defined by the specific class methods (e.g. "score" for ’fac-
tanal’, ’lda_ord’, and ’cancord_ord’ and "intraset" and "interset" for ’can-
cor_ord’).

... Additional arguments from base::as.matrix(); ignored.

.matrix A character string partially matched (lowercase) to several indicators for one
or both matrices in a matrix decomposition used for ordination. The standard
values are "rows", "cols", and "dims" (for both).

Details

The recover_*() S3 methods extract one or both of the row and column matrix factors that con-
stitute the original ordination. These are interpreted as the case scores (rows) and the variable
loadings (columns). The get_*() functions optionally (and by default) include any supplemental
observations (see supplementation).

The recover_*() functions are generics that require methods for each ordination class. They are
not intended to be called directly but are exported so that users can query methods("recover_*").

get_coord() retrieves the names of the coordinates shared by the matrix factors on which the
original data were ordinated, and get_inertia() retrieves a vector of the inertia with these names.
dim() retrieves the dimensions of the row and column factors, which reflect the dimensions of the
matrix they reconstruct—not the original data matrix. (This matters for techniques that rely on
eigendecomposition, for which the decomposed matrix is square.)

Value

The recover_*() functions are generics whose methods return base R objects retrieved from the
model wrapped in the ’tbl_ord’ class:

• rows: the row matrix as stored in the model

• cols: the column matrix as stored in the model

• inertia: the vector of eigen-values or squared singular values, often known by other names
depending on the model

• coord: names for the artificial axes, from the model if available The get_*() functions (which
are not generics) return modifications of these objects:

• rows: the recovered rows, adjusted according to any negation of axes or conference of inertia

• cols: the recovered columns, adjusted according to any negation of axes or conference of
inertia

• inertia: the recovered inertia, named by the recovered coordinates

• coord: the recovered coordinates (unmodified) dim() returns the dimensions of the decom-
posed matrix, i.e. the numbers of rows of recover_rows() and of recover_cols().

See Also

Other generic recoverers: augmentation, conference, supplementation

94 stat_center

Examples

example ordination: LRA of U.S. arrests data
arrests_lra <- ordinate(USArrests, cols = c(Murder, Rape, Assault), lra)

extract matrix factors
as.matrix(arrests_lra, .matrix = "rows")
as.matrix(arrests_lra, .matrix = "cols")
special named functions
get_rows(arrests_lra)
get_cols(arrests_lra)
get dimensions of underlying matrix factorization (not of original data)
dim(arrests_lra)

get names of artificial / latent coordinates
get_coord(arrests_lra)
get distribution of inertia
get_inertia(arrests_lra)

stat_center Compute geometric centers and spreads for ordination factors

Description

Compute geometric centers and spreads for ordination factors

Usage

stat_center(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...,
fun.data = NULL,
fun.center = NULL,
fun.min = NULL,
fun.max = NULL,
fun.args = list()

)

stat_star(
mapping = NULL,
data = NULL,
geom = "segment",
position = "identity",
show.legend = NA,

stat_center 95

inherit.aes = TRUE,
...,
fun.data = NULL,
fun.center = NULL,
fun.args = list()

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

96 stat_center

... Additional arguments passed to ggplot2::layer().
fun.data, fun.center, fun.min, fun.max, fun.args

Functions and arguments treated as in ggplot2::stat_summary(), with fun.center,
fun.min, and fun.max behaving as fun.y, fun.ymin, and fun.ymax.

Value

A ggproto layer.

Biplot layers

ggbiplot() uses ggplot2::fortify() internally to produce a single data frame with a .matrix
column distinguishing the subjects ("rows") and variables ("cols"). The stat layers stat_rows()
and stat_cols() simply filter the data frame to one of these two.

The geom layers geom_rows_*() and geom_cols_*() call the corresponding stat in order to render
plot elements for the corresponding factor matrix. geom_dims_*() selects a default matrix based
on common practice, e.g. points for rows and arrows for columns.

Ordination aesthetics

The convenience function ord_aes() can be used to incorporate all coordinates of the ordination
model into a statistical transformation. It maps the coordinates to the custom aesthetics ..coord1,
..coord2, etc.

Some transformations, e.g. stat_center(), are commutative with projection to the ’x’ and ’y’
coordinates. If they detect aesthetics of the form ..coord[0-9]+, then ..coord1 and ..coord2
are converted to x and y while any remaining are ignored.

Other transformations, e.g. stat_spantree(), yield different results in a planar biplot when they
are computer before or after projection. If such a stat layer detects these aesthetics, then the lot of
them are used in the transformation.

In either case, the stat layer returns a data frame with position aesthetics x and y.

See Also

Other stat layers: stat_chull(), stat_cone(), stat_scale(), stat_spantree()

Examples

scaled PCA of Anderson iris measurements
iris[, -5] %>%

princomp(cor = TRUE) %>%
as_tbl_ord() %>%
mutate_rows(species = iris$Species) %>%
print() -> iris_pca

row-principal biplot with centroid-based stars
iris_pca %>%

ggbiplot(aes(color = species)) +
theme_bw() +
scale_color_brewer(type = "qual", palette = 2) +

stat_chull 97

stat_rows_star(alpha = .5, fun.center = "mean") +
geom_rows_point(alpha = .5) +
stat_rows_center(fun.center = "mean", size = 4, shape = 1L) +
ggtitle(

"Row-principal PCA biplot of Anderson iris measurements",
"Segments connect each observation to its within-species centroid"

)

stat_chull Restrict geometric data to boundary points for its convex hull

Description

As used in a ggplot2 vignette, this stat layer restricts a dataset with x and y variables to the points
that lie on its convex hull. The biplot extension restricts each matrix factor to its own hull.

Usage

stat_chull(
mapping = NULL,
data = NULL,
geom = "polygon",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

98 stat_chull

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Additional arguments passed to ggplot2::layer().

Value

A ggproto layer.

Biplot layers

ggbiplot() uses ggplot2::fortify() internally to produce a single data frame with a .matrix
column distinguishing the subjects ("rows") and variables ("cols"). The stat layers stat_rows()
and stat_cols() simply filter the data frame to one of these two.

The geom layers geom_rows_*() and geom_cols_*() call the corresponding stat in order to render
plot elements for the corresponding factor matrix. geom_dims_*() selects a default matrix based
on common practice, e.g. points for rows and arrows for columns.

Ordination aesthetics

The convenience function ord_aes() can be used to incorporate all coordinates of the ordination
model into a statistical transformation. It maps the coordinates to the custom aesthetics ..coord1,
..coord2, etc.

Some transformations, e.g. stat_center(), are commutative with projection to the ’x’ and ’y’
coordinates. If they detect aesthetics of the form ..coord[0-9]+, then ..coord1 and ..coord2
are converted to x and y while any remaining are ignored.

stat_cone 99

Other transformations, e.g. stat_spantree(), yield different results in a planar biplot when they
are computer before or after projection. If such a stat layer detects these aesthetics, then the lot of
them are used in the transformation.

In either case, the stat layer returns a data frame with position aesthetics x and y.

See Also

Other stat layers: stat_center(), stat_cone(), stat_scale(), stat_spantree()

Examples

correspondence analysis of combined female and male hair and eye color data
HairEyeColor %>%

rowSums(dims = 2L) %>%
MASS::corresp(nf = 2L) %>%
as_tbl_ord() %>%
augment_ord() %>%
print() -> hec_ca

inertia across artificial coordinates (all singular values < 1)
get_inertia(hec_ca)

in row-principal biplot, row coordinates are weighted averages of columns
hec_ca %>%

confer_inertia("rows") %>%
ggbiplot(aes(color = .matrix, fill = .matrix, shape = .matrix)) +
theme_bw() +
stat_cols_chull(alpha = .1) +
geom_cols_point() +
geom_rows_point() +
ggtitle("Row-principal CA of hair & eye color")

in column-principal biplot, column coordinates are weighted averages of rows
hec_ca %>%

confer_inertia("cols") %>%
ggbiplot(aes(color = .matrix, fill = .matrix, shape = .matrix)) +
theme_bw() +
stat_rows_chull(alpha = .1) +
geom_rows_point() +
geom_cols_point() +
ggtitle("Column-principal CA of hair & eye color")

stat_cone Restrict geometric data to boundary points for its conical hull

Description

This stat layer restricts a dataset with x and y variables to the points that lie on its conical hull (other
than the origin).

100 stat_cone

Usage

stat_cone(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
origin = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

stat_cone 101

origin Logical; whether to include the origin with the transformed data. Defaults to
FALSE.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Additional arguments passed to ggplot2::layer().

Value

A ggproto layer.

Biplot layers

ggbiplot() uses ggplot2::fortify() internally to produce a single data frame with a .matrix
column distinguishing the subjects ("rows") and variables ("cols"). The stat layers stat_rows()
and stat_cols() simply filter the data frame to one of these two.

The geom layers geom_rows_*() and geom_cols_*() call the corresponding stat in order to render
plot elements for the corresponding factor matrix. geom_dims_*() selects a default matrix based
on common practice, e.g. points for rows and arrows for columns.

Ordination aesthetics

The convenience function ord_aes() can be used to incorporate all coordinates of the ordination
model into a statistical transformation. It maps the coordinates to the custom aesthetics ..coord1,
..coord2, etc.

Some transformations, e.g. stat_center(), are commutative with projection to the ’x’ and ’y’
coordinates. If they detect aesthetics of the form ..coord[0-9]+, then ..coord1 and ..coord2
are converted to x and y while any remaining are ignored.

Other transformations, e.g. stat_spantree(), yield different results in a planar biplot when they
are computer before or after projection. If such a stat layer detects these aesthetics, then the lot of
them are used in the transformation.

In either case, the stat layer returns a data frame with position aesthetics x and y.

See Also

Other stat layers: stat_center(), stat_chull(), stat_scale(), stat_spantree()

Examples

centered principal components analysis of U.S. personal expenditure data
USPersonalExpenditure %>%

prcomp() %>%
as_tbl_ord() %>%
augment_ord() %>%
allow radiating text to exceed plotting window

102 stat_rows

ggbiplot(aes(label = name), clip = "off",
sec.axes = "cols", scale.factor = 50) +

geom_rows_label(size = 3) +
geom_cols_vector() +
omit labels in the conical hull without the origin
stat_cols_cone(linetype = "dotted") +
geom_cols_text_radiate(stat = "cone") +
ggtitle(
"U.S. Personal Expenditure data, 1940-1960",
"Row-principal biplot of centered PCA"

)

stat_rows Render plot elements for one matrix of an ordination

Description

These stats merely tell ggplot2::ggplot() which factor of an ordination to pull data from for a
plot layer. They are invoked internally by the various geom_*_*() layers.

Usage

stat_rows(
mapping = NULL,
data = data,
geom = "point",
position = "identity",
subset = NULL,
elements = "all",
...,
show.legend = NA,
inherit.aes = TRUE

)

stat_cols(
mapping = NULL,
data = data,
geom = "axis",
position = "identity",
subset = NULL,
elements = "all",
...,
show.legend = NA,
inherit.aes = TRUE

)

stat_rows 103

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

subset An integer, logical, or character vector indicating a subset of rows or columns
for which to render graphical elements. NB: Internally, the subset will be taken
from the rows of the fortified ’tbl_ord’ comprising rows from only one of the
matrix factors. It is still possible to pass a formula to the data parameter, but it
will act on the fortified data before it has been restricted to one matrix factor.

elements Character vector; which elements of each factor for which to render graphi-
cal elements. One of "all" (the default), "active", or any supplementary
element type defined by the specific class methods (e.g. "score" for ’fac-
tanal’, ’lda_ord’, and ’cancord_ord’ and "intraset" and "interset" for ’can-
cor_ord’).

... Additional arguments passed to ggplot2::layer().

104 stat_scale

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

A ggproto layer.

Biplot layers

ggbiplot() uses ggplot2::fortify() internally to produce a single data frame with a .matrix
column distinguishing the subjects ("rows") and variables ("cols"). The stat layers stat_rows()
and stat_cols() simply filter the data frame to one of these two.

The geom layers geom_rows_*() and geom_cols_*() call the corresponding stat in order to render
plot elements for the corresponding factor matrix. geom_dims_*() selects a default matrix based
on common practice, e.g. points for rows and arrows for columns.

See Also

Other biplot layers: biplot-geoms, biplot-stats

Examples

FA of Swiss social data
swiss_fa <-

ordinate(swiss, model = factanal, factors = 2L, scores = "regression")
active and supplementary elements
get_rows(swiss_fa, elements = "active")
head(get_rows(swiss_fa, elements = "score"))

biplot using element filters and selection
(note that filter precedes selection)
ggbiplot(swiss_fa) +

geom_rows_point(elements = "score") +
geom_rows_text(aes(label = name), elements = "score", subset = c(1, 4, 18)) +
scale_alpha_manual(values = c(0, 1), guide = "none") +
geom_cols_vector() +
geom_cols_text_radiate(aes(label = name))

stat_scale Multiply artificial coordinates by a scale factor

Description

Multiply artificial coordinates by a scale factor

stat_scale 105

Usage

stat_scale(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...,
mult = 1

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

106 stat_scale

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Additional arguments passed to ggplot2::layer().

mult Numeric value used to scale the coordinates.

Value

A ggproto layer.

Biplot layers

ggbiplot() uses ggplot2::fortify() internally to produce a single data frame with a .matrix
column distinguishing the subjects ("rows") and variables ("cols"). The stat layers stat_rows()
and stat_cols() simply filter the data frame to one of these two.

The geom layers geom_rows_*() and geom_cols_*() call the corresponding stat in order to render
plot elements for the corresponding factor matrix. geom_dims_*() selects a default matrix based
on common practice, e.g. points for rows and arrows for columns.

Ordination aesthetics

The convenience function ord_aes() can be used to incorporate all coordinates of the ordination
model into a statistical transformation. It maps the coordinates to the custom aesthetics ..coord1,
..coord2, etc.

Some transformations, e.g. stat_center(), are commutative with projection to the ’x’ and ’y’
coordinates. If they detect aesthetics of the form ..coord[0-9]+, then ..coord1 and ..coord2
are converted to x and y while any remaining are ignored.

Other transformations, e.g. stat_spantree(), yield different results in a planar biplot when they
are computer before or after projection. If such a stat layer detects these aesthetics, then the lot of
them are used in the transformation.

In either case, the stat layer returns a data frame with position aesthetics x and y.

See Also

Other stat layers: stat_center(), stat_chull(), stat_cone(), stat_spantree()

stat_spantree 107

stat_spantree Calculate a minimum spanning tree among cases or variables

Description

This stat layer identifies the n − 1 pairs among n points that form a minimum spanning tree, then
calculates the segments between these poirs in the two dimensions x and y.

Usage

stat_spantree(
mapping = NULL,
data = NULL,
geom = "segment",
position = "identity",
engine = "mlpack",
method = "euclidean",
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

108 stat_spantree

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

engine A single character string specifying the package implementation to use; "mlpack",
"vegan", or "ade4".

method Passed to stats::dist() if engine is "vegan" or "ade4", ignored if "mlpack".

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Additional arguments passed to ggplot2::layer().

Details

A minimum spanning tree (MST) on the point cloud X is a minimal connected graph on X with
the smallest possible sum of distances (or dissimilarities) between linked points. These layers
call stats::dist() to calculate a distance/dissimilarity object and an engine from mlpack, ve-
gan, or ade4 to calculate the MST. The result is formatted with position aesthetics readable by
ggplot2::geom_segment().

An MST calculated on x and y reflects the distances among the points in X in the reduced-dimension
plane of the biplot. In contrast, one calculated on the full set of coordinates reflects distances in
higher-dimensional space. Plotting this high-dimensional MST on the 2-dimensional biplot pro-
vides a visual cue as to how faithfully two dimensions can encapsulate the "true" distances between
points (Jolliffe, 2002).

Value

A ggproto layer.

Biplot layers

ggbiplot() uses ggplot2::fortify() internally to produce a single data frame with a .matrix
column distinguishing the subjects ("rows") and variables ("cols"). The stat layers stat_rows()
and stat_cols() simply filter the data frame to one of these two.

The geom layers geom_rows_*() and geom_cols_*() call the corresponding stat in order to render
plot elements for the corresponding factor matrix. geom_dims_*() selects a default matrix based
on common practice, e.g. points for rows and arrows for columns.

stat_spantree 109

Ordination aesthetics

The convenience function ord_aes() can be used to incorporate all coordinates of the ordination
model into a statistical transformation. It maps the coordinates to the custom aesthetics ..coord1,
..coord2, etc.

Some transformations, e.g. stat_center(), are commutative with projection to the ’x’ and ’y’
coordinates. If they detect aesthetics of the form ..coord[0-9]+, then ..coord1 and ..coord2
are converted to x and y while any remaining are ignored.

Other transformations, e.g. stat_spantree(), yield different results in a planar biplot when they
are computer before or after projection. If such a stat layer detects these aesthetics, then the lot of
them are used in the transformation.

In either case, the stat layer returns a data frame with position aesthetics x and y.

References

Jolliffe IT (2002) Principal Component Analysis, Second Edition. Springer Series in Statistics,
ISSN 0172-7397. doi:10.1007/b98835 https://link.springer.com/book/10.1007/b98835

See Also

Other stat layers: stat_center(), stat_chull(), stat_cone(), stat_scale()

Examples

Not run:
classical multidimensional scaling of road distances between European cities
euro_mds <- ordinate(eurodist, cmdscale_ord, k = 11)

biplot with minimal spanning tree based on full-dimensional distances
(as implemented in {mlpack})
euro_mds %>%

negate_ord("PCo2") %>%
ggbiplot() +
stat_cols_spantree(
ord_aes(euro_mds), engine = "mlpack",
alpha = .5, linetype = "dotted"

) +
geom_cols_text(aes(label = name), size = 3) +
ggtitle(

"MDS biplot of road distances between European cities",
"Dotted segments constitute the minimal spanning tree"

)

End(Not run)

https://doi.org/10.1007/b98835
https://link.springer.com/book/10.1007/b98835

110 supplementation

supplementation Supplement ’tbl_ord’ objects with new data

Description

These functions attach supplementary rows or columns to an ordination object.

Usage

recover_supp_rows(x)

Default S3 method:
recover_supp_rows(x)

recover_supp_cols(x)

Default S3 method:
recover_supp_cols(x)

Arguments

x An object of class ’tbl_ord’.

Details

The recover_supp_*() S3 methods produce matrices of supplemental rows or columns of a tbl_ord
object from the object itself. The motivating example is linear discriminant analysis, which pro-
duces a natural biplot of class discriminant centroids and variable axes but is usually supplemented
with case discriminant scores. The supplementary values are augmented with an .element column
whose value indicates their source and can be incorporated into a tidied form. If no supplementary
rows of a factor are produced, the functions return NULL.

Value

Matrices having the same numbers of columns as returned by recover_rows() and recover_cols(),
or else NULL.

See Also

Other generic recoverers: augmentation, conference, recoverers

tbl_ord 111

tbl_ord A unified ordination object class

Description

These functions wrap ordination objects in the class tbl_ord, create tbl_ords directly from matrices,
and test for the class and basic structure.

Usage

as_tbl_ord(x)

S3 method for class 'tbl_ord'
as_tbl_ord(x)

make_tbl_ord(rows = NULL, cols = NULL, ...)

is_tbl_ord(x)

is.tbl_ord(x)

valid_tbl_ord(x)

un_tbl_ord(x)

Arguments

x An ordination object.

rows, cols Matrices to be used as factors of a tbl_ord.

... Additional elements of a custom tbl_ord.

Details

The tbl_ord class wraps around a range of ordination classes, making available a suite of ordination
tools that specialize to each original object class. These tools include format() and fortify()
methods, which facilitate the print() method and the ggbiplot() function.

No default method is provided for as_tbl_ord(), despite most defined methods being equivalent
(simply appending ’tbl_ord’ to the vector of object classes). This prevents objects for which other
methods are not defined from being re-classed as tbl_ords.

The function make_tbl_ord() creates a tbl_ord structured as a list of two matrices, u and v, which
must have the same number of columns and the same column names.

is_tbl_ord() checks an object x for the tbl_ord class; valid_tbl_ord() additionally checks for
consistency between recover_coord(x) and the columns of recover_rows(x) and recover_cols(x),
using the recoverers. un_tbl_ord() removes attributes associated with the tbl_ord class in order to
restore an object that was originally passed to as_tbl_ord.

112 theme_biplot

Value

A tbl_ord (as*(), make*()), an S3-class model object that can be wrapped as one (un*()), or a
logical value (is*(), value*()).

Examples

illustrative ordination: FA of Swiss social data
swiss_fa <- factanal(swiss, factors = 3L, scores = "regression")
print(swiss_fa)

add the 'tbl_ord' wrapper
swiss_fa_ord <- as_tbl_ord(swiss_fa)
inspect wrapped model
is_tbl_ord(swiss_fa_ord)
print(swiss_fa_ord)
valid_tbl_ord(swiss_fa_ord)
unwrap the model
un_tbl_ord(swiss_fa_ord)

create a 'tbl_ord' directly from row and column factors
(missing inertia & other attributes)
swiss_fa_ord2 <- make_tbl_ord(rows = swiss_fa$scores, cols = swiss_fa$loadings)
inspect wrapped factors
is_tbl_ord(swiss_fa_ord2)
print(swiss_fa_ord2)
valid_tbl_ord(swiss_fa_ord2)
unwrap factors
un_tbl_ord(swiss_fa_ord2)

theme_biplot Biplot theme

Description

Omit coordinate visual aids from biplots.

Usage

theme_biplot()

Details

Because the artificial axes often go uninterpreted, biplots may omit the visual aids (tick marks and
labels, grid lines) used to recover the artificial coordinates of the row and column markers The biplot
(partial) theme removes these elements from the current theme. This can be especially helpful when
plotting axes or isolines.

Value

A ggplot theme.

tidiers 113

tidiers Tidiers for ’tbl_ord’ objects

Description

These functions return tibbles that summarize an object of class ’tbl_ord’. tidy() output contains
one row per artificial coordinate and glance() output contains one row for the whole ordination.

Usage

S3 method for class 'tbl_ord'
tidy(x, ...)

S3 method for class 'tbl_ord'
glance(x, ...)

S3 method for class 'tbl_ord'
fortify(model, data, ..., .matrix = "dims", elements = "all")

Arguments

x, model An object of class ’tbl_ord’.

... Additional arguments allowed by generics; currently ignored.

data Passed to generic methods; currently ignored.

.matrix A character string partially matched (lowercase) to several indicators for one
or both matrices in a matrix decomposition used for ordination. The standard
values are "rows", "cols", and "dims" (for both).

elements Character vector; which elements of each factor for which to render graphi-
cal elements. One of "all" (the default), "active", or any supplementary
element type defined by the specific class methods (e.g. "score" for ’fac-
tanal’, ’lda_ord’, and ’cancord_ord’ and "intraset" and "interset" for ’can-
cor_ord’).

Details

Three generics popularized by the ggplot2 and broom packages make use of the augmentation
methods:

• The generics::tidy() method summarizes information about model components, which
here are the artificial coordinates created by ordinations. The output can be passed to ggplot2::ggplot()
to generate scree plots. The returned columns are

– name: (the name of) the coordinate
– other columns extracted from the model, usually a single additional column of the singu-

lar or eigen values
– inertia: the multidimensional variance

114 tidiers

– prop_var: the proportion of inertia
– quality: the cumulative proportion of variance

• The generics::glance() method reports information about the entire model, here always
treated as one of a broader class of ordination models. The returned columns are

– rank: the rank of the ordination model, i.e. the number of ordinates
– n.row,n.col: the dimensions of the decomposed matrix
– inertia: the total inertia in the ordination
– prop.var.*: the proportion of variance in the first 2 ordinates
– class: the class of the wrapped model object

• The ggplot2::fortify() method augments and collapses row and/or column data, depend-
ing on .matrix and .element, into a single tibble, in preparation for ggplot2::ggplot().
Its output resembles that of generics::augment(), though rows in the output may corre-
spond to rows, columns, or both of the original data. If .matrix is passed "rows", "cols",
or "dims" (for both), then fortify() returns a tibble whose fields are obtained, in order, via
get_*(), recover_aug_*(), and annotation_*().

The tibble is assigned a "coordinates" attribute whose value is obtained via get_coord(). This
facilitates some downstream functionality that relies on more than those coordinates used as position
aesthetics in a biplot, in particular stat_spantree().

Value

A tibble.

See Also

augmentation methods that must interface with tidiers.

Examples

illustrative ordination: PCA of iris data
iris_pca <- ordinate(iris, ~ prcomp(., center = TRUE, scale. = TRUE), seq(4L))

use `tidy()` to summarize distribution of inertia
tidy(iris_pca)
this facilitates scree plots
tidy(iris_pca) %>%

ggplot(aes(x = name, y = prop_var)) +
geom_col() +
scale_y_continuous(labels = scales::percent) +
labs(x = NULL, y = "Proportion of variance")

use `fortify()` to prepare either matrix factor for `ggplot()`
fortify(iris_pca, .matrix = "V") %>%

ggplot(aes(x = name, y = PC1)) +
geom_col() +
coord_flip() +
labs(x = "Measurement")

iris_pca %>%

wrap-ord 115

fortify(.matrix = "U") %>%
ggplot(aes(x = PC1, fill = Species)) +
geom_histogram() +
labs(y = NULL)

... or to prepare both for `ggbiplot()`
fortify(iris_pca)

use `glance()` to summarize the model as an ordination
glance(iris_pca)
this enables comparisons to other models
rbind(

glance(ordinate(subset(iris, Species == "setosa"), prcomp, seq(4L))),
glance(ordinate(subset(iris, Species == "versicolor"), prcomp, seq(4L))),
glance(ordinate(subset(iris, Species == "virginica"), prcomp, seq(4L)))

)

wrap-ord Wrappers for lossy ordination methods

Description

These *_ord functions wrap core R functions with modifications for use with ’tbl_ord’ methods.
Some parameters are hidden from the user and set to settings required for these methods, some
matrix outputs are given row or column names to be used by them, and new ’*_ord’ S3 class
attributes are added to enable them.

Usage

eigen_ord(x, symmetric = isSymmetric.matrix(x))

svd_ord(x, nu = min(dim(x)), nv = min(dim(x)))

cmdscale_ord(d, k = 2, add = FALSE)

cancor_ord(x, y, xcenter = TRUE, ycenter = TRUE, scores = FALSE)

Arguments

x a numeric or complex matrix whose spectral decomposition is to be computed.
Logical matrices are coerced to numeric.

symmetric if TRUE, the matrix is assumed to be symmetric (or Hermitian if complex) and
only its lower triangle (diagonal included) is used. If symmetric is not specified,
isSymmetric(x) is used.

nu the number of left singular vectors to be computed. This must between 0 and n
= nrow(x).

nv the number of right singular vectors to be computed. This must be between 0
and p = ncol(x).

116 wrap-ord

d a distance structure such as that returned by dist or a full symmetric matrix
containing the dissimilarities.

k the maximum dimension of the space which the data are to be represented in;
must be in {1, 2, . . . , n− 1}.

add logical indicating if an additive constant c∗ should be computed, and added to
the non-diagonal dissimilarities such that the modified dissimilarities are Eu-
clidean.

y numeric matrix (n× p2), containing the y coordinates.

xcenter logical or numeric vector of length p1, describing any centering to be done on
the x values before the analysis. If TRUE (default), subtract the column means. If
FALSE, do not adjust the columns. Otherwise, a vector of values to be subtracted
from the columns.

ycenter analogous to xcenter, but for the y values.

scores Logical; whether to return canonical scores and structure correlations.

Details

The following table summarizes the wrapped functions:

Original function Hide params New params Add names New class
base::eigen() Yes No Yes Yes
base::svd() Yes No Yes Yes
stats::cmdscale() Yes No No Yes
stats::cancor() No Yes No Yes

By default, cancor_ord() returns the same data as stats::cancor(): the canonical correla-
tions (cor), the canonical coefficients ($xcoef and $ycoef), and the variable means ($xcenter,
$ycenter). If scores = TRUE, then cancor_ord() also returns the scores $xscores and $yscores
calculated from the (appropriately centered) data and the coefficients and the intraset structure cor-
relations $xstructure and $ystructure between these and the data. These modifications are
inspired by the cancor() function in candisc, though two caveats should be noted: First, the
canonical coefficients (hence the canonical scores) are scaled by n − 1 compared to these, though
the intraset structure correlations are the same. Second, the interset structure correlations are not
returned, as these may be obtained by conferring inertia unto the intraset ones.

Value

Objects slightly modified from the outputs of the original functions, with new ’*-ord’ classes.

Examples

glass composition data from one furnace
glass_banias <- subset(

glass,
Context == "L.15;B.166",
select = c("SiO2", "Na2O", "CaO", "Al2O3", "MgO", "K2O")

)

wrap-ord 117

eigendecomposition of a covariance matrix
(glass_cov <- cov(glass_banias))
eigen_ord(glass_cov)
singular value decomposition of a data matrix
svd_ord(glass_banias)
classical multidimensional scaling of a distance matrix
cmdscale_ord(dist(glass_banias))

canonical correlation analysis with trace components
glass_banias_minor <- subset(

glass,
Context == "L.15;B.166",
select = c("TiO2", "FeO", "MnO", "P2O5", "Cl", "SO3")

)
impute half of detection threshold
glass_banias_minor$TiO2[[1L]] <- 0.5
cancor_ord(glass_banias, glass_banias_minor)

calculate canonical scores and structure correlations
glass_cca <-

cancor_ord(glass_banias[, 1:3], glass_banias_minor[, 1:3], scores = TRUE)
scores
glass_cca$xscores
intraset correlations
glass_cca$xstructure
interset correlations
glass_cca$xstructure %*% diag(glass_cca$cor)

Index

∗ biplot layers
biplot-geoms, 5
biplot-stats, 16
stat_rows, 102

∗ datasets
glass, 51
ordr-ggproto, 88
qswur_usa, 90

∗ generic recoverers
augmentation, 4
conference, 22
recoverers, 91
supplementation, 110

∗ geom layers
geom_axis, 28
geom_isoline, 32
geom_lineranges, 35
geom_origin, 38
geom_text_radiate, 40
geom_vector, 44

∗ methods for eigen-decomposition-based
techniques

methods-cmds, 62
methods-eigen, 65
methods-factanal, 68
methods-princomp, 82

∗ methods for idiosyncratic techniques
methods-kmeans, 70
methods-lm, 74

∗ methods for singular value
decomposition-based techniques

methods-cancor, 59
methods-correspondence, 63
methods-lda, 72
methods-lra, 76
methods-mca, 78
methods-prcomp, 80
methods-svd, 84

∗ models from the MASS package

methods-correspondence, 63
methods-lda, 72
methods-mca, 78

∗ models from the base package
methods-eigen, 65
methods-svd, 84

∗ models from the stats package
methods-cancor, 59
methods-cmds, 62
methods-factanal, 68
methods-kmeans, 70
methods-lm, 74
methods-prcomp, 80
methods-princomp, 82

∗ stat layers
stat_center, 94
stat_chull, 97
stat_cone, 99
stat_scale, 104
stat_spantree, 107

’tbl_df’, 4

aes(), 14, 20, 29, 33, 36, 39, 41, 44, 95, 97,
100, 103, 105, 107

annotation, 3, 5, 24, 28
array, 87
as.matrix.tbl_ord (recoverers), 91
as_tbl_ord (tbl_ord), 111
as_tbl_ord(), 61, 63, 64, 67, 69, 70, 73, 75,

77, 79, 81, 83, 85
as_tbl_ord.cancor_ord (methods-cancor),

59
as_tbl_ord.cmds_ord (methods-cmds), 62
as_tbl_ord.correspondence

(methods-correspondence), 63
as_tbl_ord.eigen (methods-eigen), 65
as_tbl_ord.eigen_ord (methods-eigen), 65
as_tbl_ord.factanal (methods-factanal),

68
as_tbl_ord.kmeans (methods-kmeans), 70

118

INDEX 119

as_tbl_ord.lda (methods-lda), 72
as_tbl_ord.lda_ord (methods-lda), 72
as_tbl_ord.lm (methods-lm), 74
as_tbl_ord.lra (methods-lra), 76
as_tbl_ord.mca (methods-mca), 78
as_tbl_ord.prcomp (methods-prcomp), 80
as_tbl_ord.princomp (methods-princomp),

82
as_tbl_ord.svd_ord (methods-svd), 84
attributes, 55
augment_ord (augmentation), 4
augment_ord(), 87
augmentation, 4, 4, 23, 28, 93, 110, 113, 114
axes, 112

base::as.matrix(), 93
base::eigen(), 65, 66, 116
base::format(), 27
base::print(), 27
base::svd(), 116
biplot-geoms, 5
biplot-stats, 16
biplot.lra (lra-ord), 57
biplot.tbl_ord (plot.tbl_ord), 89
borders(), 15, 21, 30, 34, 37, 39, 42, 45, 95,

98, 101, 104, 106, 108

cancor_ord (wrap-ord), 115
cancor_ord(), 59, 60, 116
cbind_cols (dplyr-verbs), 24
cbind_rows (dplyr-verbs), 24
class, 55
cmdscale_ord (wrap-ord), 115
cmdscale_ord(), 62
confer_inertia (conference), 22
conference, 5, 22, 93, 110
conferring inertia, 60
core model components, 60, 63, 64, 66, 69,

70, 73, 75, 77, 79, 81, 83, 85
cov.mve, 54

data.frame, 3, 87, 88
dim.tbl_ord (recoverers), 91
distribution of inertia, 60, 63, 64, 66,

69, 70, 73, 75, 77, 79, 81, 83, 85
dplyr, 24
dplyr-verbs, 24
dplyr::pull(), 25
dplyr::select(), 25

draw-key, 26
draw_key_crosslines (draw-key), 26
draw_key_crosspoint (draw-key), 26
draw_key_line (draw-key), 26

eigen_ord (wrap-ord), 115
eigen_ord(), 65, 66

force(), 58
format, 27
format(), 111
fortified, 103
fortify(), 14, 20, 29, 33, 36, 39, 41, 44, 95,

97, 100, 103, 105, 107, 111
fortify.tbl_ord (tidiers), 113
fortify.tbl_ord(), 47

generics::augment(), 4, 114
generics::glance(), 114
generics::tidy(), 113
geom_*_*(), 102
geom_axis, 28, 35, 38, 40, 43, 46
geom_cols_axis (biplot-geoms), 5
geom_cols_isoline (biplot-geoms), 5
geom_cols_label (biplot-geoms), 5
geom_cols_label_repel (biplot-geoms), 5
geom_cols_lineranges (biplot-geoms), 5
geom_cols_path (biplot-geoms), 5
geom_cols_point (biplot-geoms), 5
geom_cols_pointranges (biplot-geoms), 5
geom_cols_polygon (biplot-geoms), 5
geom_cols_text (biplot-geoms), 5
geom_cols_text_radiate (biplot-geoms), 5
geom_cols_text_repel (biplot-geoms), 5
geom_cols_vector (biplot-geoms), 5
geom_isoline, 31, 32, 38, 40, 43, 46
geom_lineranges, 31, 35, 35, 40, 43, 46
geom_origin, 31, 35, 38, 38, 43, 46
geom_pointranges (geom_lineranges), 35
geom_rows_axis (biplot-geoms), 5
geom_rows_isoline (biplot-geoms), 5
geom_rows_label (biplot-geoms), 5
geom_rows_label_repel (biplot-geoms), 5
geom_rows_lineranges (biplot-geoms), 5
geom_rows_path (biplot-geoms), 5
geom_rows_point (biplot-geoms), 5
geom_rows_pointranges (biplot-geoms), 5
geom_rows_polygon (biplot-geoms), 5
geom_rows_text (biplot-geoms), 5

120 INDEX

geom_rows_text_radiate (biplot-geoms), 5
geom_rows_text_repel (biplot-geoms), 5
geom_rows_vector (biplot-geoms), 5
geom_text_radiate, 31, 35, 38, 40, 40, 46
geom_unit_circle (geom_origin), 38
geom_vector, 31, 35, 38, 40, 43, 44
GeomAxis (ordr-ggproto), 88
GeomIsoline (ordr-ggproto), 88
GeomLineranges (ordr-ggproto), 88
GeomOrigin (ordr-ggproto), 88
GeomPointranges (ordr-ggproto), 88
GeomTextRadiate (ordr-ggproto), 88
GeomUnitCircle (ordr-ggproto), 88
GeomVector (ordr-ggproto), 88
get_cols (recoverers), 91
get_conference (conference), 22
get_conference(), 89
get_coord (recoverers), 91
get_coord(), 114
get_inertia (recoverers), 91
get_negation (negation), 85
get_rows (recoverers), 91
ggbiplot, 46
ggbiplot(), 30, 34, 37, 39, 42, 45, 48, 54, 96,

98, 101, 104, 106, 108, 111
ggplot, 47, 48
ggplot(), 14, 20, 29, 33, 36, 39, 41, 44, 95,

97, 100, 103, 105, 107
ggplot2, 26, 97
ggplot2::aes(), 48
ggplot2::coord_equal(), 47
ggplot2::draw_key, 26
ggplot2::draw_key_point(), 26
ggplot2::draw_key_vline(), 26
ggplot2::fortify(), 30, 34, 37, 39, 42, 45,

47, 48, 96, 98, 101, 104, 106, 108,
114

ggplot2::geom_segment(), 108
ggplot2::ggplot(), 47, 102, 113, 114
ggplot2::ggplot2(), 48
ggplot2::ggproto, 89
ggplot2::layer(), 15, 21, 30, 33, 34, 37, 39,

45, 96, 98, 101, 103, 106, 108
ggplot2::stat_summary(), 21, 96
ggproto, 88
glance.tbl_ord (tidiers), 113
glass, 51
grid::arrow(), 15, 45

grid::pathGrob(), 15
grid::unit(), 39

inertia, 47
intrinsic metadata, 60, 63, 64, 66, 69, 70,

73, 75, 77, 79, 81, 83, 85
is.tbl_ord (tbl_ord), 111
is_tbl_ord (tbl_ord), 111
isolines, 112
isSymmetric, 115

key glyphs, 42

layer, 16, 21, 30, 34, 37, 39, 42, 45, 96, 98,
101, 104, 106, 108

layer geom, 20, 95, 98, 100, 103, 105, 107
layer position, 14, 21, 29, 33, 37, 42, 45,

95, 98, 100, 103, 105, 108
layer stat, 14, 29, 33, 36, 41, 44
layer(), 42
lda-ord, 52, 73
lda_ord (lda-ord), 52
lda_ord(), 54, 72
left_join_cols (dplyr-verbs), 24
left_join_rows (dplyr-verbs), 24
log-ratio analysis, 51
lra (lra-ord), 57
lra(), 76
lra-ord, 57

make_tbl_ord (tbl_ord), 111
MASS, 63, 78
MASS::lda(), 52, 54, 55, 72
MASS::mca(), 79
match.fun(), 87
methods-cancor, 59
methods-cmds, 62
methods-correspondence, 63
methods-eigen, 65
methods-factanal, 68
methods-kmeans, 70
methods-lda, 72
methods-lm, 74
methods-lra, 76
methods-mca, 78
methods-prcomp, 80
methods-princomp, 82
methods-svd, 84
mutate_cols (dplyr-verbs), 24

INDEX 121

mutate_rows (dplyr-verbs), 24

negate_ord (negation), 85
negate_to_first_orthant (negation), 85
negation, 85

option, 28
ord_aes (ggbiplot), 46
ord_aes(), 21, 96, 98, 101, 106, 109
ordinate, 87
ordr-ggproto, 88

plot.lra (lra-ord), 57
plot.tbl_ord, 89
predict.lda_ord (lda-ord), 52
print(), 111
print.lra (lra-ord), 57
print.tbl_ord (format), 27
pull_cols (dplyr-verbs), 24
pull_factor (dplyr-verbs), 24
pull_rows (dplyr-verbs), 24

qswur_usa, 90

recover_aug_cols (augmentation), 4
recover_aug_cols.cancor_ord

(methods-cancor), 59
recover_aug_cols.cmds_ord

(methods-cmds), 62
recover_aug_cols.correspondence

(methods-correspondence), 63
recover_aug_cols.eigen_ord

(methods-eigen), 65
recover_aug_cols.factanal

(methods-factanal), 68
recover_aug_cols.kmeans

(methods-kmeans), 70
recover_aug_cols.lda (methods-lda), 72
recover_aug_cols.lda_ord (methods-lda),

72
recover_aug_cols.lm (methods-lm), 74
recover_aug_cols.lra (methods-lra), 76
recover_aug_cols.mca (methods-mca), 78
recover_aug_cols.mlm (methods-lm), 74
recover_aug_cols.prcomp

(methods-prcomp), 80
recover_aug_cols.princomp

(methods-princomp), 82
recover_aug_cols.svd_ord (methods-svd),

84

recover_aug_coord (augmentation), 4
recover_aug_coord.cancor_ord

(methods-cancor), 59
recover_aug_coord.cmds_ord

(methods-cmds), 62
recover_aug_coord.correspondence

(methods-correspondence), 63
recover_aug_coord.eigen

(methods-eigen), 65
recover_aug_coord.eigen_ord

(methods-eigen), 65
recover_aug_coord.factanal

(methods-factanal), 68
recover_aug_coord.kmeans

(methods-kmeans), 70
recover_aug_coord.lda (methods-lda), 72
recover_aug_coord.lda_ord

(methods-lda), 72
recover_aug_coord.lm (methods-lm), 74
recover_aug_coord.lra (methods-lra), 76
recover_aug_coord.mca (methods-mca), 78
recover_aug_coord.mlm (methods-lm), 74
recover_aug_coord.prcomp

(methods-prcomp), 80
recover_aug_coord.princomp

(methods-princomp), 82
recover_aug_coord.svd_ord

(methods-svd), 84
recover_aug_rows (augmentation), 4
recover_aug_rows.cancor_ord

(methods-cancor), 59
recover_aug_rows.cmds_ord

(methods-cmds), 62
recover_aug_rows.correspondence

(methods-correspondence), 63
recover_aug_rows.eigen_ord

(methods-eigen), 65
recover_aug_rows.factanal

(methods-factanal), 68
recover_aug_rows.glm (methods-lm), 74
recover_aug_rows.kmeans

(methods-kmeans), 70
recover_aug_rows.lda (methods-lda), 72
recover_aug_rows.lda_ord (methods-lda),

72
recover_aug_rows.lm (methods-lm), 74
recover_aug_rows.lra (methods-lra), 76
recover_aug_rows.mca (methods-mca), 78

122 INDEX

recover_aug_rows.mlm (methods-lm), 74
recover_aug_rows.prcomp

(methods-prcomp), 80
recover_aug_rows.princomp

(methods-princomp), 82
recover_aug_rows.svd_ord (methods-svd),

84
recover_cols (recoverers), 91
recover_cols(), 110
recover_cols.cancor_ord

(methods-cancor), 59
recover_cols.cmds_ord (methods-cmds), 62
recover_cols.correspondence

(methods-correspondence), 63
recover_cols.eigen (methods-eigen), 65
recover_cols.eigen_ord (methods-eigen),

65
recover_cols.factanal

(methods-factanal), 68
recover_cols.kmeans (methods-kmeans), 70
recover_cols.lda (methods-lda), 72
recover_cols.lda_ord (methods-lda), 72
recover_cols.lm (methods-lm), 74
recover_cols.lra (methods-lra), 76
recover_cols.mca (methods-mca), 78
recover_cols.mlm (methods-lm), 74
recover_cols.prcomp (methods-prcomp), 80
recover_cols.princomp

(methods-princomp), 82
recover_cols.svd_ord (methods-svd), 84
recover_conference (conference), 22
recover_conference.cancor_ord

(methods-cancor), 59
recover_conference.cmds_ord

(methods-cmds), 62
recover_conference.correspondence

(methods-correspondence), 63
recover_conference.eigen

(methods-eigen), 65
recover_conference.eigen_ord

(methods-eigen), 65
recover_conference.factanal

(methods-factanal), 68
recover_conference.lda (methods-lda), 72
recover_conference.lda_ord

(methods-lda), 72
recover_conference.lra (methods-lra), 76
recover_conference.mca (methods-mca), 78

recover_conference.prcomp
(methods-prcomp), 80

recover_conference.princomp
(methods-princomp), 82

recover_conference.svd_ord
(methods-svd), 84

recover_coord (recoverers), 91
recover_coord.cancor_ord

(methods-cancor), 59
recover_coord.cmds_ord (methods-cmds),

62
recover_coord.correspondence

(methods-correspondence), 63
recover_coord.eigen (methods-eigen), 65
recover_coord.eigen_ord

(methods-eigen), 65
recover_coord.factanal

(methods-factanal), 68
recover_coord.kmeans (methods-kmeans),

70
recover_coord.lda (methods-lda), 72
recover_coord.lda_ord (methods-lda), 72
recover_coord.lm (methods-lm), 74
recover_coord.lra (methods-lra), 76
recover_coord.mca (methods-mca), 78
recover_coord.mlm (methods-lm), 74
recover_coord.prcomp (methods-prcomp),

80
recover_coord.princomp

(methods-princomp), 82
recover_coord.svd_ord (methods-svd), 84
recover_inertia (recoverers), 91
recover_inertia.cancor_ord

(methods-cancor), 59
recover_inertia.cmds_ord

(methods-cmds), 62
recover_inertia.correspondence

(methods-correspondence), 63
recover_inertia.eigen (methods-eigen),

65
recover_inertia.eigen_ord

(methods-eigen), 65
recover_inertia.factanal

(methods-factanal), 68
recover_inertia.lda (methods-lda), 72
recover_inertia.lda_ord (methods-lda),

72
recover_inertia.lra (methods-lra), 76

INDEX 123

recover_inertia.mca (methods-mca), 78
recover_inertia.prcomp

(methods-prcomp), 80
recover_inertia.princomp

(methods-princomp), 82
recover_inertia.svd_ord (methods-svd),

84
recover_rows (recoverers), 91
recover_rows(), 110
recover_rows.cancor_ord

(methods-cancor), 59
recover_rows.cmds_ord (methods-cmds), 62
recover_rows.correspondence

(methods-correspondence), 63
recover_rows.eigen (methods-eigen), 65
recover_rows.eigen_ord (methods-eigen),

65
recover_rows.factanal

(methods-factanal), 68
recover_rows.kmeans (methods-kmeans), 70
recover_rows.lda (methods-lda), 72
recover_rows.lda_ord (methods-lda), 72
recover_rows.lm (methods-lm), 74
recover_rows.lra (methods-lra), 76
recover_rows.mca (methods-mca), 78
recover_rows.mlm (methods-lm), 74
recover_rows.prcomp (methods-prcomp), 80
recover_rows.princomp

(methods-princomp), 82
recover_rows.svd_ord (methods-svd), 84
recover_supp_cols (supplementation), 110
recover_supp_cols.cancor_ord

(methods-cancor), 59
recover_supp_rows (supplementation), 110
recover_supp_rows.cancor_ord

(methods-cancor), 59
recover_supp_rows.factanal

(methods-factanal), 68
recover_supp_rows.lda (methods-lda), 72
recover_supp_rows.lda_ord

(methods-lda), 72
recover_supp_rows.mca (methods-mca), 78
recover_supp_rows.princomp

(methods-princomp), 82
recoverers, 5, 23, 28, 91, 110, 111
rename_cols (dplyr-verbs), 24
rename_rows (dplyr-verbs), 24
revert_conference (conference), 22

revert_negation (negation), 85

S3 method, 23
S3 methods, 4, 93, 110
screeplot.lra (lra-ord), 57
screeplot.tbl_ord (plot.tbl_ord), 89
select_cols (dplyr-verbs), 24
select_rows (dplyr-verbs), 24
set.seed, 16
stat_center, 94, 99, 101, 106, 109
stat_center(), 21, 96, 98, 101, 106, 109
stat_chull, 96, 97, 101, 106, 109
stat_cols (stat_rows), 102
stat_cols(), 5, 16
stat_cols_center (biplot-stats), 16
stat_cols_chull (biplot-stats), 16
stat_cols_cone (biplot-stats), 16
stat_cols_ellipse (biplot-stats), 16
stat_cols_scale (biplot-stats), 16
stat_cols_spantree (biplot-stats), 16
stat_cols_star (biplot-stats), 16
stat_cone, 96, 99, 99, 106, 109
stat_rows, 16, 22, 102
stat_rows(), 5, 16
stat_rows_center (biplot-stats), 16
stat_rows_chull (biplot-stats), 16
stat_rows_cone (biplot-stats), 16
stat_rows_ellipse (biplot-stats), 16
stat_rows_scale (biplot-stats), 16
stat_rows_spantree (biplot-stats), 16
stat_rows_star (biplot-stats), 16
stat_scale, 96, 99, 101, 104, 109
stat_spantree, 96, 99, 101, 106, 107
stat_spantree(), 22, 96, 99, 101, 106, 109,

114
stat_star (stat_center), 94
StatCenter (ordr-ggproto), 88
StatChull (ordr-ggproto), 88
StatCols (ordr-ggproto), 88
StatColsCenter (ordr-ggproto), 88
StatColsChull (ordr-ggproto), 88
StatColsCone (ordr-ggproto), 88
StatColsEllipse (ordr-ggproto), 88
StatColsScale (ordr-ggproto), 88
StatColsSpantree (ordr-ggproto), 88
StatColsStar (ordr-ggproto), 88
StatCone (ordr-ggproto), 88
StatRows (ordr-ggproto), 88
StatRowsCenter (ordr-ggproto), 88

124 INDEX

StatRowsChull (ordr-ggproto), 88
StatRowsCone (ordr-ggproto), 88
StatRowsEllipse (ordr-ggproto), 88
StatRowsScale (ordr-ggproto), 88
StatRowsSpantree (ordr-ggproto), 88
StatRowsStar (ordr-ggproto), 88
stats::biplot.prcomp(), 89
stats::biplot.princomp(), 89
stats::cancor(), 59, 116
stats::cmdscale(), 62, 116
stats::dist, 87
stats::dist(), 21, 108
stats::factanal(), 68, 69
stats::glm(), 74
stats::kmeans(), 70
stats::lm(), 74
stats::plot.prcomp(), 89
stats::plot.princomp(), 89
stats::prcomp(), 80
stats::princomp(), 82, 83
stats::screeplot(), 89
StatScale (ordr-ggproto), 88
StatSpantree (ordr-ggproto), 88
StatStar (ordr-ggproto), 88
supplementary elements, 60, 63, 64, 66, 69,

70, 73, 75, 77, 79, 81, 83, 85
supplementation, 5, 23, 93, 110
svd_ord (wrap-ord), 115
svd_ord(), 84

table, 87
tbl_df, 28
tbl_ord, 3, 4, 23–25, 27, 28, 46, 47, 52, 86,

87, 92, 110, 111, 111, 113, 115
theme, 112
theme_biplot, 112
tibble, 4, 51, 90, 114
tibbles, 113
tidied form, 110
tidiers, 5, 113
tidy.tbl_ord (tidiers), 113
transmute_cols (dplyr-verbs), 24
transmute_rows (dplyr-verbs), 24

un_tbl_ord (tbl_ord), 111

valid_tbl_ord (tbl_ord), 111

wrap-ord, 115

	annotation
	augmentation
	biplot-geoms
	biplot-stats
	conference
	dplyr-verbs
	draw-key
	format
	geom_axis
	geom_isoline
	geom_lineranges
	geom_origin
	geom_text_radiate
	geom_vector
	ggbiplot
	glass
	lda-ord
	lra-ord
	methods-cancor
	methods-cmds
	methods-correspondence
	methods-eigen
	methods-factanal
	methods-kmeans
	methods-lda
	methods-lm
	methods-lra
	methods-mca
	methods-prcomp
	methods-princomp
	methods-svd
	negation
	ordinate
	ordr-ggproto
	plot.tbl_ord
	qswur_usa
	recoverers
	stat_center
	stat_chull
	stat_cone
	stat_rows
	stat_scale
	stat_spantree
	supplementation
	tbl_ord
	theme_biplot
	tidiers
	wrap-ord
	Index

